設(shè)p:實數(shù)x滿足x2-4ax+3a2<0,q:實數(shù)x滿足|x-3|<1.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若其中a>0且¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:(1)若a=1,根據(jù)p∧q為真,則p,q同時為真,即可求實數(shù)x的取值范圍;
(2)根據(jù)¬p是¬q的充分不必要條件,建立條件關(guān)系即可求實數(shù)a的取值范圍.
解答: 解:(1)由x2-4ax+3a2<0得(x-3a)(x-a)<0
當(dāng)a=1時,1<x<3,即p為真時實數(shù)x的取值范圍是1<x<3.
由|x-3|<1,得-1<x-3<1,得2<x<4
即q為真時實數(shù)x的取值范圍是2<x<4,
若p∧q為真,則p真且q真,
∴實數(shù)x的取值范圍是2<x<3.
(2)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
若¬p是¬q的充分不必要條件,
則¬p⇒¬q,且¬q?¬p,
設(shè)A={x|¬p},B={x|¬q},則A?B,
又A={x|¬p}={x|x≤a或x≥3a},
B={x|¬q}={x|x≥4或x≤2},
則0<a≤2,且3a≥4
∴實數(shù)a的取值范圍是
4
3
≤a≤2
點(diǎn)評:本題主要考查復(fù)合命題的真假關(guān)系以及充分條件和必要條件的應(yīng)用,考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)(2,2),且圓心在x軸上.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線l經(jīng)過點(diǎn)(1,2),且l與圓C相交所得弦長為2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(x+1),g(x)=x-
1
2
x2,a∈R.
(Ⅰ)若a=-1,求曲線y=f(x)在x=3處的切線方程;
(Ⅱ)若對任意的x∈[0,+∞),都有f(x)≥g(x)恒成立,求a的最小值;
(Ⅲ)設(shè)p(x)=f(x-1),a>0,若A(x1,y1),B(x2,y2)為曲線y=p(x)的兩個不同點(diǎn),滿足0<x1<x2,且?x3∈(x1,x2),使得曲線y=f(x)在x3處的切線與直線AB平行,求證:x3
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}單調(diào)遞增,a1=1,且a2,a3+4,2a7+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的公差d
(2)令bn=
1
an
+
an+1
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(sinx,cosx),
b
=(sinx,
3
sinx),x∈R,函數(shù)f(x)=
a
•(
a
+2
b
).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求使不等式f′(x)≥2成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c為正數(shù),且3a=4b=6c,求證:
1
c
-
1
a
=
1
2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

沿矩形ABCD的對角線AC折起,形成空間四邊形ABCD,使得二面角B-AC-D為120°,若AB=2,BC=1,則此時四面體ABCD的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lnan,b3=18,b6=12,則數(shù)列{bn}前n項和的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中線段AB與y軸垂直,其長度為2,AB的中點(diǎn)C在直線x+2y-4=0上,則∠AOB的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案