【題目】已知點(diǎn)在橢圓上,、分別為的左、右頂點(diǎn),直線與的斜率之積為,為橢圓的右焦點(diǎn),直線.
(1)求橢圓的方程;
(2)直線過點(diǎn)且與橢圓交于、兩點(diǎn),直線、分別與直線交于、兩點(diǎn).試問:以為直徑的圓是否過定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo),否則,請說明理由.
【答案】(1);(2)過定點(diǎn)和,理由見解析.
【解析】
(1)利用直線與的斜率之積為,得出,再由點(diǎn)在橢圓上,可求出的值,即可得出橢圓的標(biāo)準(zhǔn)方程;
(2)由對稱性知,以為直徑的圓過軸上的定點(diǎn),設(shè)直線的方程為,點(diǎn)、,設(shè)點(diǎn)、,求出、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出的值,由,結(jié)合韋達(dá)定理求出的值,即可得出定點(diǎn)的坐標(biāo).
(1)點(diǎn)在橢圓上,則,①,
易知點(diǎn)、,
直線的斜率為,直線的斜率為,
由題意可得,解得,代入①式得,
因此,橢圓的方程為;
(2)易知,直線不能與軸重合.
由對稱性知,以為直徑的圓過軸上的定點(diǎn),
設(shè)直線的方程為,點(diǎn)、,設(shè)點(diǎn)、,
如下圖所示:
易知點(diǎn),,即,,
得,同理可得.
將直線的方程與橢圓的方程聯(lián)立,
消去得,,.
由韋達(dá)定理得,,
,
,,
,解得或.
因此,以為直徑的圓過定點(diǎn)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若為曲線上的動點(diǎn),求中點(diǎn)到直線的距離最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的右焦點(diǎn)且垂直于軸的直線與雙曲線交于兩點(diǎn),為虛軸的一個端點(diǎn),且為鈍角三角形,則此雙曲線離心率的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn),是曲線上的任意一點(diǎn),動點(diǎn)滿足
(1)求點(diǎn)的軌跡方程;
(2)經(jīng)過點(diǎn)的動直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)有一塊三角形空地,如圖△ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計(jì)劃在這片空地上進(jìn)行綠化和修建運(yùn)動場所,在△ABC內(nèi)的P點(diǎn)處有一服務(wù)站(其大小可忽略不計(jì)),開發(fā)商打算在AC邊上選一點(diǎn)D,然后過點(diǎn)P和點(diǎn)D畫一分界線與邊AB相交于點(diǎn)E,在△ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運(yùn)動場所. 現(xiàn)已知點(diǎn)P處的服務(wù)站與AC距離為10米,與BC距離為100米. 設(shè)米,試問取何值時,運(yùn)動場所面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于充分必要條件的判斷中,錯誤的是( )
A.“”是“”的充分條件
B.“”是“”的必要條件
C.“”是“”的充要條件
D.“,”是“”的非充分非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的最大值為,最小值為,則( )
A.存在實(shí)數(shù),使
B.存在實(shí)數(shù),使
C.對任意實(shí)數(shù),有
D.對任意實(shí)數(shù),有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的最小正周期;
(2)若將函數(shù)圖像向左平移個單位后得到函數(shù)的圖像,求函數(shù)在區(qū)間上的值域;
(3)銳角三角形中,若,,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com