【題目】判斷下列函數(shù)的奇偶性
(1);
(2).
【答案】(1)時,是偶函數(shù);當(dāng)時,是非奇非偶函數(shù).
(2)時,既是奇函數(shù)又是偶函數(shù);當(dāng)時,是奇函數(shù).
【解析】
(1)首先求出函數(shù)的定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱,然后分類討論的取值范圍;當(dāng)時, 當(dāng)時,最后利用奇偶性定義進(jìn)行判斷.
(2)首先求出函數(shù)的定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱,然后分類討論的取值范圍;當(dāng)時, 當(dāng)時,最后利用奇偶性定義進(jìn)行判斷.
解:(1)函數(shù)的定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱.
當(dāng)時,,對任意,
∴為偶函數(shù).
當(dāng)時,,取,得,即,∴是非奇非偶函數(shù).
綜上所述,當(dāng)時,是偶函數(shù);當(dāng)時,是非奇非偶函數(shù).
(2)函數(shù)的定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱.
①當(dāng)時,,此時既是奇函數(shù)又是偶函數(shù).
②當(dāng)時,,
∴是奇函數(shù).
綜上所述,當(dāng)時,既是奇函數(shù)又是偶函數(shù);當(dāng)時,是奇函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知是直線上的動點(diǎn),點(diǎn)的坐標(biāo)是,過的直線與垂直,并且與線段的垂直平分線相交于點(diǎn) .
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)曲線上的動點(diǎn)關(guān)于軸的對稱點(diǎn)為,點(diǎn)的坐標(biāo)為,直線與曲線的另一個交點(diǎn)為(與不重合),是否存在一個定點(diǎn),使得三點(diǎn)共線?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.用表示m,n中的最小值,設(shè)函數(shù).
(1)當(dāng)時,求的最大值;
(2)討論零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個警亭有直道相通,已知在的正北方向6千米處,在的正東方向千米處.
(1)警員甲從出發(fā),沿行至點(diǎn)處,此時,求的距離;
(2)警員甲從出發(fā)沿前往,警員乙從出發(fā)沿前往,兩人同時出發(fā),甲的速度為3千米/小時,乙的速度為6千米/小時.兩人通過專用對講機(jī)保持聯(lián)系,乙到達(dá)后原地等待,直到甲到達(dá)時任務(wù)結(jié)束.若對講機(jī)的有效通話距離不超過9千米,試問兩人通過對講機(jī)能保持聯(lián)系的總時長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線與交于,兩點(diǎn),.
(1)求的方程;
(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,是上一點(diǎn),且.
(1)求的方程;
(2)設(shè)點(diǎn)是上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過點(diǎn)作軸的垂線交于點(diǎn),證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com