【題目】(題文)已知是直線上的動(dòng)點(diǎn),點(diǎn)的坐標(biāo)是,過(guò)的直線與垂直,并且與線段的垂直平分線相交于點(diǎn) .
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)曲線上的動(dòng)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)的坐標(biāo)為,直線與曲線的另一個(gè)交點(diǎn)為(與不重合),是否存在一個(gè)定點(diǎn),使得三點(diǎn)共線?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在定點(diǎn),使得三點(diǎn)共線
【解析】試題分析:(Ⅰ)由題意可知:,即曲線為拋物線,焦點(diǎn)坐標(biāo)為,點(diǎn)的軌跡的方程;(Ⅱ)設(shè),則,直線的方程,代入拋物線方程,求得的坐標(biāo),的方程為,則令,則,直線與軸交于定點(diǎn),即可求得存在一個(gè)定點(diǎn),使得三點(diǎn)共線.
試題解析:(Ⅰ)依題意,,即曲線為拋物線,其焦點(diǎn)為,準(zhǔn)線方程為:,所以曲線的方程為.
(Ⅱ)設(shè),則,
直線的斜率為,直線的方程為.
由方程組得.
設(shè),則,,,所以,
又,所以的方程為.
令,得.即直線與軸交于定點(diǎn).
因此存在定點(diǎn),使得,,三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
階梯級(jí)別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) |
從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:
(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;
(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
(1)求頻率直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為4,動(dòng)點(diǎn)E,F在棱上,動(dòng)點(diǎn)P,Q分別在棱AD,CD上。若,,,(大于零),則四面體PEFQ的體積
A.與都有關(guān)B.與m有關(guān),與無(wú)關(guān)
C.與p有關(guān),與無(wú)關(guān)D.與π有關(guān),與無(wú)關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若, , ,使得(),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是一門(mén)以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對(duì)任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有.
其中真命題的序號(hào)是________________(請(qǐng)寫(xiě)出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿足b2=ac,cosB=.
(1)求+的值;
(2)設(shè)=,求三邊a、b、c的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com