【題目】(題文)已知是直線上的動(dòng)點(diǎn),點(diǎn)的坐標(biāo)是,過(guò)的直線垂直,并且與線段的垂直平分線相交于點(diǎn) .

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線上的動(dòng)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)的坐標(biāo)為,直線與曲線的另一個(gè)交點(diǎn)為(不重合),是否存在一個(gè)定點(diǎn),使得三點(diǎn)共線?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)存在定點(diǎn),使得三點(diǎn)共線

【解析】試題分析:()由題意可知:,即曲線為拋物線,焦點(diǎn)坐標(biāo)為,點(diǎn)的軌跡的方程;()設(shè),則,直線的方程,代入拋物線方程,求得的坐標(biāo),的方程為,則令,則,直線軸交于定點(diǎn),即可求得存在一個(gè)定點(diǎn),使得三點(diǎn)共線.

試題解析:(Ⅰ)依題意,,即曲線為拋物線,其焦點(diǎn)為,準(zhǔn)線方程為,所以曲線的方程為

(Ⅱ)設(shè),則,

直線的斜率為,直線的方程為

由方程組

設(shè),則,,,所以,

,所以的方程為

,得.即直線軸交于定點(diǎn)

因此存在定點(diǎn),使得,三點(diǎn)共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;

(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若時(shí)均有,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為4,動(dòng)點(diǎn)E,F在棱上,動(dòng)點(diǎn)P,Q分別在棱ADCD上。若,,,大于零),則四面體PEFQ的體積

A.都有關(guān)B.m有關(guān),與無(wú)關(guān)

C.p有關(guān),與無(wú)關(guān)D.π有關(guān),與無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若 , ,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是一門(mén)以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對(duì)任意的正整數(shù) ,都有 ;

④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有

其中真命題的序號(hào)是________________(請(qǐng)寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、BC的對(duì)邊分別為ab、c,且滿足b2=accosB=

1)求+的值;

2)設(shè)=,求三邊a、b、c的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列函數(shù)的奇偶性

(1);

(2).

查看答案和解析>>

同步練習(xí)冊(cè)答案