【題目】2018年元旦期間,某運(yùn)動(dòng)服裝專賣店舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過400元均可參加1次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖),轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針指向哪個(gè)扇形區(qū)域,則顧客可直接獲得該區(qū)域?qū)?yīng)面額(單位:元)的現(xiàn)金優(yōu)惠,且允許顧客轉(zhuǎn)動(dòng)3次.
方案二:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖〕,轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針若指向陰影部分,則未中獎(jiǎng),若指向白色區(qū)域,則顧客可直接獲得40元現(xiàn)金,且允許顧客轉(zhuǎn)動(dòng)3次.
(1)若兩位顧客均獲得1次抽獎(jiǎng)機(jī)會(huì),且都選擇抽獎(jiǎng)方案一,試求這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;
(2)若某顧客恰好獲得1次抽獎(jiǎng)機(jī)會(huì).
①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得現(xiàn)金獎(jiǎng)勵(lì)的數(shù)學(xué)期望;
②從概率的角度比較①中該顧客選擇哪一種抽獎(jiǎng)方案更合算?
【答案】(1) (2) ①見解析②該顧客選擇第一種抽獎(jiǎng)方案更合算
【解析】試題分析:(1)由圖可知,每一次轉(zhuǎn)盤指向60元對(duì)應(yīng)區(qū)域的概率為,設(shè)“每位顧客獲得180元現(xiàn)金獎(jiǎng)勵(lì)”為事件,則,結(jié)合乘法概率公式得到這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;
(2)①方案一: 可能的取值為60,100,140,180, 方案二: ,故;
②由①知,所以該顧客選擇第一種抽獎(jiǎng)方案更合算.
試題解析:
(1)選擇方案一,若要享受到180元的現(xiàn)金優(yōu)惠,則必須每次旋轉(zhuǎn)轉(zhuǎn)盤都指向60元對(duì)應(yīng)的區(qū)域, 由圖可知,每一次轉(zhuǎn)盤指向60元對(duì)應(yīng)區(qū)域的概率為.
設(shè)“每位顧客獲得180元現(xiàn)金獎(jiǎng)勵(lì)”為事件,
則,
所以兩位顧客均獲得180元現(xiàn)金獎(jiǎng)勵(lì)的概率為.
(2)①若選擇抽獎(jiǎng)方案一,則每一次轉(zhuǎn)盤指向60元對(duì)應(yīng)區(qū)域的概率為,每一次轉(zhuǎn)盤指向20元對(duì)應(yīng)區(qū)域的概率為.
設(shè)獲得現(xiàn)金獎(jiǎng)勵(lì)金額為元,
則可能的取值為60,100,140,180.
則;
;
;
.
所以選擇抽獎(jiǎng)方案一,該顧客獲得現(xiàn)金獎(jiǎng)勵(lì)金額的數(shù)學(xué)期望為(元).
若選擇抽獎(jiǎng)方案二,設(shè)三次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的過程中,指針指向白色區(qū)域的次數(shù)為,最終獲得現(xiàn)金獎(jiǎng)勵(lì)金額為元,則,故,
所以選擇抽獎(jiǎng)方案二,該顧客獲得現(xiàn)金獎(jiǎng)勵(lì)金額的數(shù)學(xué)期望為(元).
②由①知,
所以該顧客選擇第一種抽獎(jiǎng)方案更合算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)圖像在處的切線方程;
(2)證明:;
(3)若不等式對(duì)于任意的均成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn)的直線與相交于不同的兩點(diǎn),滿足?
若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意n∈N*總有2Sn=an2+n,且an<an+1.若對(duì)任意n∈N*,θ∈R,不等式λ(n+2)恒成立,求實(shí)數(shù)λ的最小值( )
A.1B.2C.1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知都是各項(xiàng)不為零的數(shù)列,且滿足,,其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.
(1)若數(shù)列的通項(xiàng)公式分別為,求數(shù)列的通項(xiàng)公式;
(2)若(是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;
(3)若(為常數(shù),),(,),對(duì)任意,,求出數(shù)列的最大項(xiàng)(用含式子表達(dá)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,過點(diǎn)和
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間和極大值點(diǎn);
(Ⅱ)求實(shí)數(shù)的值;
(Ⅲ)若恰有兩個(gè)零點(diǎn),請(qǐng)直接寫出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且時(shí)有極大值.
(Ⅰ)求的解析式;
(Ⅱ)若為的導(dǎo)函數(shù),不等式(為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.(注:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·滄州質(zhì)檢]對(duì)于橢圓,有如下性質(zhì):若點(diǎn)是橢圓上的點(diǎn),則橢圓在該點(diǎn)處的切線方程為.利用此結(jié)論解答下列問題.點(diǎn)是橢圓上的點(diǎn),并且橢圓在點(diǎn)處的切線斜率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)在直線上,經(jīng)過點(diǎn)的直線,與橢圓相切,切點(diǎn)分別為,.求證:直線必經(jīng)過一定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com