1.函數(shù)f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)(x∈R)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

分析 根據(jù)正弦型函數(shù)y=Asin(ωx+φ)的最小正周期是T=$\frac{2π}{ω}$,寫出答案即可.

解答 解:函數(shù)f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)(x∈R)的最小正周期是:
T=$\frac{2π}{ω}$=$\frac{2π}{\frac{1}{2}}$=4π.
故選:D.

點(diǎn)評 本題考查了正弦型函數(shù)y=Asin(ωx+φ)的最小正周期的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,且取相同的單位長度建立平面直角坐標(biāo)系,則直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線l與曲線C交于A,B兩點(diǎn),且|PA|•|PB|=1,求非負(fù)實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=$\frac{1}{{\sqrt{1+x}}}$
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時(shí),不等式$\frac{a}{x}≤\frac{1}{{\sqrt{1+x}}}≤\frac{a+4}{2x}$恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|-1在[0,3]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sinα+cosα=$\frac{2}{3}$,則sin2α的值為( 。
A.$\frac{5}{9}$B.±$\frac{5}{9}$C.-$\frac{5}{9}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在矩形ABCD中,AB=3,BC=2,若點(diǎn)E為BC的中點(diǎn),點(diǎn)F在CD上,$\overrightarrow{AB}$•$\overrightarrow{AF}$=6,則$\overrightarrow{AE}$•$\overrightarrow{BF}$的值為-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x2+ax+b的圖象與x軸的一個(gè)交點(diǎn)為(1,0),對稱軸為x=2,則函數(shù)f(x)的解析式為f(x)=x2-4x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為調(diào)查了解某高等院校畢業(yè)生參加工作后,從事的工作與大學(xué)所學(xué)專業(yè)是否專業(yè)對口,該校隨機(jī)調(diào)查了80位該校2015年畢業(yè)的大學(xué)生,得到具體數(shù)據(jù)如下表:
專業(yè)對口專業(yè)不對口合計(jì)
301040
35540
合計(jì)651580
(1)能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口與性別有關(guān)”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K)0.500.400.250.150.100.050.0250.010
 0.4550.7081.3232.0722.3063.8415.0216.635
(2)求這80位畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口的人數(shù)為X,求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案