已知兩個正數(shù)ab的等差中項為4,則ab的等比中項的最大值為(  )

A.2B.4C.8D.16

B

解析試題分析:由等差中項的定義得到關(guān)于a、b的關(guān)系式,再根據(jù)均值不等式化簡即可得到關(guān)于a、b的等比中項的不等式,即可求最大值。
∵a、b的等差中項為4,∴a+b=8,又∵a、b是正數(shù),∴(a=b時等號成立)
≤4,又由等比中項的定義知a、b的等比中項為±∴a、b的等比中項的最大值為4,故選B
考點:等差中項,等比中項
點評:本題考查等差中項和等比中項的定義和均值不等式,要注意兩個數(shù)的等比中項有兩個,同時要注意均值不等式的條件.屬簡單題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:單選題

在數(shù)列中,=1,,則的值為            (    )

A.99 B.49 C.102 D.101 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知為等差數(shù)列,若,則

A.24B.27C.15D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使得Sn達到最大值的n是(   )

A.21 B.20 C.19 D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

是等差數(shù)列,首項,則使前n項和成立的最大自然數(shù)n是:(   )

A.4005 B.4006 C.4007 D.4008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知數(shù)列-1,a1,a2,-4成等差數(shù)列,數(shù)列-1,b1,b2,b3,-4成等比數(shù)列,則

A.±B.±C.-D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是(  )

A.289B.1024C.1225D.1378

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知數(shù)列為等差數(shù)列且,則的值為( )

A. B. C. D.— 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

是等差數(shù)列的前項和,已知,,則等于

A.13 B.35 C.49 D.63

查看答案和解析>>

同步練習冊答案