【題目】某媒體對(duì)男女延遲退休這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,下表是在某單位調(diào)查后得到的數(shù)據(jù)(人數(shù))

贊同

反對(duì)

合計(jì)

5

6

11

11

3

14

合計(jì)

16

9

25

1)能否有90%以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān)?

2)進(jìn)一步調(diào)查:

①從贊同男女延遲退休人中選出人進(jìn)行陳述發(fā)言,求事件男士和女士各至少有人發(fā)言的概率;

②從反對(duì)男女延遲退休人中選出人進(jìn)行座談,設(shè)選出的人中女士人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)有以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān).2)①;②見解析,1

【解析】

1)由題設(shè)知,由此得到結(jié)果.

2)①記題設(shè)事件為,則,由此能求出事件“男士和女士各至少有1人發(fā)言”的概率.

②根據(jù)題意,服從超幾何分布,,1,2,3.由此能求出的分布列和均值.

1,

由此可知,有以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān).

2)①記題設(shè)事件為,則所求概率為.

②根據(jù)題意知, 服從超幾何分布, ,,,,,

;;

的分布列為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,D,E分別是的中點(diǎn).

(1)求證:DE∥平面

(2)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

(1)若點(diǎn)的直角坐標(biāo)為,求直線及曲線的直角坐標(biāo)方程;

(2)若點(diǎn)上,直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過原點(diǎn)O的直線與函數(shù)的圖象交于A,B兩點(diǎn),分別過A,By軸的平行線與函數(shù)圖象交于CD兩點(diǎn),若軸,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】101日,某品牌的兩款最新手機(jī)(記為型號(hào),型號(hào))同時(shí)投放市場(chǎng),手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在101日當(dāng)天,隨機(jī)調(diào)查了5個(gè)手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:

手機(jī)店

型號(hào)手機(jī)銷量

6

6

13

8

11

型號(hào)手機(jī)銷量

12

9

13

6

4

(Ⅰ)若在101日當(dāng)天,從,這兩個(gè)手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號(hào)手機(jī)的概率;

(Ⅱ)現(xiàn)從這5個(gè)手機(jī)店中任選3個(gè)舉行促銷活動(dòng),用表示其中型號(hào)手機(jī)銷量超過型號(hào)手機(jī)銷量的手機(jī)店的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)經(jīng)測(cè)算,型號(hào)手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號(hào)手機(jī)銷量的方差,試給出表中5個(gè)手機(jī)店的型號(hào)手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間直角坐標(biāo)系中,已知正四棱錐的高,點(diǎn)分別在軸和軸上,且,點(diǎn)是棱的中點(diǎn).

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若的極值,求的值,并求的單調(diào)區(qū)間。

(2)若時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點(diǎn)分別為.橢圓C上任一點(diǎn)P都滿足,并且該橢圓過點(diǎn).

求橢圓C的方程;

Ⅱ)過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),過點(diǎn)Ax軸的垂線,交該橢圓于點(diǎn)M,求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案