【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (t為參數(shù),).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,已知直線L的極坐標方程為.

(1)設(shè)P是曲線C上的一個動點,當時,求點P到直線l的距離的最大值;

(2)若曲線C上所有的點均在直線l的右下方,求a的取值范圍.

【答案】(1) 點P到直線l距離的最大值為;(2) a取值范圍為.

【解析】

(1)先求出直線l的方程,設(shè),求出P到直線l的距離,再求函數(shù)的最大值.(2)由題得,恒成立,再求a的取值范圍.

(1)由,得,化成直角坐標方程,得,即直線l的方程為,依題意,設(shè),則P到直線l的距離,當,即時,,故點P到直線l距離的最大值為.

(2)因為曲線C上的所有點均在直線l的右下方,∵,恒成立,即

(其中)恒成立,

,又,解得,故a取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知底角為的等腰梯形,底邊長為7,腰長為,當一條垂直于底邊垂足為的直線從左至右向移動(與梯形有公共點)時,直線把梯形分成兩部分,令,記左邊部分的面積為

1)試求1,3時的值;

2)寫出關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)滿足,當時,,設(shè)上的最大值為,且的前n項和為,若對任意的正整數(shù)n均成立,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

分別求出適合下列條件的直線方程:

(1)經(jīng)過點且在軸上的截距等于在軸上截距的2倍;

(2)經(jīng)過直線的交點,且和,等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)=[]

若曲線y= fx在點(1,處的切線與軸平行a;

x=2處取得極小值,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求ab的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當時,恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標準,新標準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問題:

(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?

(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)

(參數(shù)數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為.

1)若對任意恒成立,求實數(shù)的取值范圍;

2)若函數(shù)的極值為正數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x,gx)=(4lnxlnx+bbR).

1)若fx)>0,求實數(shù)x的取值范圍;

2)若存在x1,x2[1,+∞),使得fx1)=gx2),求實數(shù)b的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案