【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)班級(jí)工作的態(tài)度有關(guān)系?并說(shuō)明理由.
本題參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1); (2)有的把握認(rèn)為學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān),理由見(jiàn)解析
【解析】
(1)根據(jù)給數(shù)據(jù),代入古典概型的概率計(jì)算公式即可;
(2)計(jì)算出的值,對(duì)照表中數(shù)據(jù),即可得出結(jié)論.
解:(1)抽到積極參加班級(jí)工作的學(xué)生的概率為
抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是
(2)
因,
因此我們有的把握認(rèn)為學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數(shù)列{an-1}為等比數(shù)列.
(2)若bn=anlog2(an-1),數(shù)列{bn}的前項(xiàng)和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓:的離心率是,長(zhǎng)軸是圓:的直徑.點(diǎn)是橢圓的下頂點(diǎn),,是過(guò)點(diǎn)且互相垂直的兩條直線,與圓相交于,兩點(diǎn),交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)的面積取最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng), , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請(qǐng)給以證明;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),△IOJ的邊IJ上的中線長(zhǎng)為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,,,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖),為中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成的角的正弦值.
(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某連鎖分店銷(xiāo)售某種商品,該商品每件的進(jìn)價(jià)為元,預(yù)計(jì)當(dāng)每件商品售價(jià)為元時(shí),一年的銷(xiāo)售量(單位:萬(wàn)件)該分店全年需向總店繳納宣傳費(fèi)、保管費(fèi)共計(jì)萬(wàn)元.
(1)求該連鎖分店一年的利潤(rùn)與每件商品售價(jià)的函數(shù)關(guān)系式;
(2)求當(dāng)每件商品售價(jià)為多少元時(shí),該連鎖店一年的利潤(rùn)最大,并求其最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com