已知橢圓
x2
10-m
+
y2
m-4
=1的長軸在y軸上,且焦距為2,則m等于( 。
A、9B、8C、7.5D、7
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)條件可得a2=m-4,b2=10-m,c2=a2-b2=2m-14.由焦距為2,即c=1.即可得到m的值.
解答: 解:由橢圓
x2
10-m
+
y2
m-4
=1的長軸在y軸上,
則a2=m-4,b2=10-m,c2=a2-b2=2m-14.
由焦距為2,即2c=2,即有c=1.
即有2m-14=1,解得m=7.5.
故選C.
點評:本題考查橢圓的方程和性質(zhì),考查橢圓中的參數(shù)a,b,c的關(guān)系,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知{an}是各項為正數(shù)的等差數(shù)列,a1,a2,a4成等比數(shù)列.令bn=
1
a2n
,n=1,2,3….
(1)證明{bn}為等比數(shù)列;
(2)如果無窮數(shù)列{bn}各項的和S=
1
3
,求數(shù)列{an}的首項a1和公差d;
(3)在(2)的條件下令cn=an+1,是否存在m,k∈N,有cm+cm+1=ck?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
10-m
+
y2
m-2
=1的實軸在y軸上且焦距為8,則雙曲線的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N*).
(1)證明數(shù)列{
1
an
+(-1)n}
為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設bn=
1
an2
,求{bn}的前n項和Sn;
(3)設cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項和Tn,求證:對?n∈N*,Tn
4
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M,N分別是AF、BC的中點
(Ⅰ)求證:MN∥平面CDEF:
(Ⅱ)求二面角A-CF-B的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE=
1
3
BB1,C1F=
1
3
CC1
(1)求異面直線AE與A1 F所成角的大。
(2)求平面AEF與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足不等式組
y≤x
x+y≥2
x≤2
,則目標函數(shù)z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
1
2
+
1
2x+1
. 
(1)證明:函數(shù)f(x)是減函數(shù);   
(2)證明:函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個條件中,使a>b成立的充分不必要條件是( 。
A、a3>b3
B、a>b+1
C、a2>b2
D、a>b-1

查看答案和解析>>

同步練習冊答案