在平面直角坐標系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,直線l:y=
3
與橢圓C相切.
(1)求橢圓C的方程;
(2)設(shè)AB是橢圓C上兩個動點,點P(-1,
3
2
)滿足
PA
+
PB
PO
(0<λ<4且λ≠2),求直線AB的斜率.
考點:橢圓的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由直線l:y=
3
與橢圓C相切,可得b,利用離心率為
1
2
,可得
c
a
=
1
2
,又a2-b2=c2=1,聯(lián)立解得a2,b2即可;
(2)設(shè)直線y=kx+m,與橢圓方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用向量運算和向量相等即可得出.
解答: 解:(1)∵直線l:y=
3
與橢圓C相切,∴b=
3
,
∵離心率為
1
2
,∴
c
a
=
1
2

又a2-c2=b2=3,聯(lián)立解得a2=4,b2=3.
∴橢圓C的方程為
x2
4
+
y2
3
=1
;
(2)設(shè)直線y=kx+m,代入橢圓方程,化為(3+4k2)x2+8kmx+4m2-12=0,
∵直線AB與橢圓有兩個不同的交點,∴△=64k2m2-4(3+4k2)(4m2-12)>0,化為3+4k2-m2>0.(*)
∴x1+x2=-
8km
3+4k2

∵滿足
PA
+
PB
PO
(0<λ<4,且λ≠2),
∴x1+x2+2=λ,y1+y2-3=-
3
2
λ,
又y1+y2=kx1+m+kx2+m=k(x1+x2)+2m,
∴(k+
3
2
)(x1+x2)+2m=0,
∴(k+
3
2
)×(-
8km
3+4k2
)+2m=0,
化為m(2k-1)=0,
若m=0,則直線AB經(jīng)過原點,此時
PA
+
PB
=2
PO
,λ=2,不符合題意,因此m≠0.
∴2k-1=0,解得k=
1
2
點評:本題中考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、向量的運算與相等等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2-2x)ex,x∈[-2,+∞),f′(x)是函數(shù)f(x)的導函數(shù),且f′(x)有兩個零點x1和x2(x1<x2),則f(x)的最小值為( 。
A、f(x1
B、f(x2
C、f(-2)
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點.
(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)各項為正的數(shù)列{an}的前n項和為Sn,且滿足:2Sn=an•(an+1);數(shù)列{bn}滿足:bn-bn-1=an-1(n≥2,n∈N*),且b1=1.
(1)求an和bn;
(2)設(shè)Tn為數(shù)列{
1
bn+2n
}的前n項和,若Tn≤λan+1對一切n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)求Tn;
(3)求滿足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
2013
2014
的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}的前n項和為Sn,且a2=2,S3=7.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an+1(n∈N*),數(shù)列{
1
bnbn+1
}的前n項和Tn,求證Tn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n的和Sn,且3tSn-(2t+3)Sn-1=3t,其中t>0,n∈N*,n≥2.nnnn
(1)求證:數(shù)列{an}是等比數(shù)列.
(2)設(shè)數(shù)列{an}的公比為f(t),數(shù)列b1=1,bn=f(
1
bn-1
)(n≥2)
,求數(shù)列{bn}的通項.
(3)記Tn=b1b2-b2b3+b3b4-b4b5+…-b2nb2n+1,求證:Tn≤-
20
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=4,AC=3,M,N分別是AB,AC的中點.
(Ⅰ)用
AB
,
AC
表示
BN
,
CM
;
(Ⅱ)若∠BAC=60°,求
BN
CM
的值;
(Ⅲ)若BN⊥CM,求cos∠BAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求出直線
x=2+t
y=-1-t
(t為參數(shù))與曲線
x=3cosα
y=3sinα
(α為參數(shù))的交點坐標.

查看答案和解析>>

同步練習冊答案