19.若復數(shù)z1=4+19i,z2=6+9i,其中i是虛數(shù)單位,則復數(shù)z1+z2的實部為10.

分析 利用復數(shù)的加法的運算法則化簡求解即可.

解答 解:復數(shù)z1=4+19i,z2=6+9i,其中i是虛數(shù)單位,則復數(shù)z1+z2=10+28i.
復數(shù)的實部為:10.
故答案為:10.

點評 本題考查復數(shù)的基本運算以及復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.若關于x的不等式xln+x-kx+3k>0對任意x>1恒成立,則整數(shù)k的最大值為( 。
A.4B.3C.2D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.化簡:$\sqrt{{{({2-π})}^2}}$=π-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在公差為d的等差數(shù)列{an}中有:an=am+(n-m)d (m、n∈N+),類比到公比為q的等比數(shù)列{bn}中有:${b_n}={b_m}•{q^{n-m}}({m,n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(用數(shù)字作答)
從5本不同的故事書和4本不同的數(shù)學書中選出4本,送給4位同學,每人1本,問:
(1)如果故事書和數(shù)學書各選2本,共有多少種不同的送法?
(2)如果故事書甲和數(shù)學書乙必須送出,共有多少種不同的送法?
(3)如果選出的4本書中至少有3本故事書,共有多少種不同的送法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知復數(shù)z滿足|z|=1,則|z-3-4i|的最小值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.解關于x的不等式$\frac{(a+2)x-4}{x-1}$≤2(其中a>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0)過點M(1,-2),且焦點為F,直線l與拋物線相交于A、B兩點.
(1)求拋物線C的方程,并求其準線方程;
(2)若直線l經(jīng)過拋物線C的焦點F,當線段AB的長等于5時,求直線l方程.
(3)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=2x+sinx,且f(y2-2y+3)+f(x2-4x+1)≤0,則當y≥1時,$\frac{y}{x+1}$的取值范圍是( 。
A.$[{\frac{1}{4},\frac{3}{4}}]$B.$[{0,\frac{3}{4}}]$C.$[{\frac{1}{4},\frac{1}{2}}]$D.$[{\frac{1}{4},\frac{1}{3}}]$

查看答案和解析>>

同步練習冊答案