分析 (Ⅰ)由等邊三角形的性質(zhì)及已知可得AC=2CD,進而利用正弦定理即可得解sin∠CADsin∠D的值為12.
(Ⅱ)設(shè)CD=x,則可求BC=2x,BD=3x,利用余弦定理即可解得x的值,進而得解CD的值.
解答 (本題滿分為13分)
解:(Ⅰ)∵△ABC是等邊三角形,∴AC=BC,
又∵BC=2CD,∴AC=2CD,
∴在△ACD中,由正弦定理可得:CDsin∠CAD=ACsin∠D,
∴sin∠CADsin∠D=CDAC=12.
(Ⅱ)設(shè)CD=x,則BC=2x,
∴BD=3x,
∵△ABD中,AD=√7,AB=2x,∠B=π3,
∴由余弦定理可得:AD2=AB2+BD2-2AB•BD•cos∠B,
即:7=4x2+9x2-2x×3x,解得:x=1,
∴CD=1.
點評 本題主要考查了等邊三角形的性質(zhì),正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -32 | B. | 0 | C. | -32 或 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | −12 | B. | −34 | C. | 0 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [5,e2) | B. | [5,7] | C. | {5,6,7} | D. | {5,6,7,8} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com