3.已知集合A={x∈N*|-2<x≤2},B={y|y=2x,x∈A}|,C={z|z=1+log2y,y∈B},則A∩C=( 。
A.{1,2}B.{2}C.{2,3,4}D.{1,2,3,4}

分析 分別求出集合A,B,C,由此能求出A∩C.

解答 解:∵集合A={x∈N*|-2<x≤2}={1,2},
B={y|y=2x,x∈A}={2,4},
C={z|z=1+log2y,y∈B}={2,3},
∴A∩C={2}.
故選:B.

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線經(jīng)過點(diǎn)P(1,2),且與直線y=2x+3平行,則該直線方程為y=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{m}{x}$+$\frac{1}{2}$lnx-1(m∈R)的兩個(gè)零點(diǎn)為x1,x2(x1<x2).
(1)求實(shí)數(shù)m的取值范圍;
(2)求證:$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為( 。
A.$\frac{\sqrt{6}}{3π}$B.$\frac{\sqrt{6}}{6π}$C.$\frac{3\sqrt{2}}{8π}$D.$\frac{3\sqrt{2}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=e|x|-x3的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|y=$\sqrt{m+1-x}$},B={x|x<-4或x>2}
(1)若m=-2,求A∩(∁RB);
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若變量x、y滿足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,則x2+y2的最小值是( 。
A.$\frac{\sqrt{2}}{2}$B.1C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)A(-1,2),B(1,-3),點(diǎn)P在線段AB的延長線上,且$\frac{|\overrightarrow{AP}|}{|\overrightarrow{PB}|}$=3,則點(diǎn)P的坐標(biāo)為( 。
A.(3,-$\frac{11}{2}$)B.($\frac{1}{2}$,-$\frac{11}{4}$)C.(2,-$\frac{11}{2}$)D.($\frac{1}{2}$,-$\frac{7}{4}$)

查看答案和解析>>

同步練習(xí)冊答案