A. | $\frac{\sqrt{6}}{3π}$ | B. | $\frac{\sqrt{6}}{6π}$ | C. | $\frac{3\sqrt{2}}{8π}$ | D. | $\frac{3\sqrt{2}}{4π}$ |
分析 設(shè)球半徑為R,正方體邊長(zhǎng)為a,由題意得當(dāng)正方體體積最大時(shí):${a}^{2}+(\frac{\sqrt{2}}{2}a)^{2}$=R2,由此能求出所得工件體積與原料體積之比的最大值.
解答 解:設(shè)球半徑為R,正方體邊長(zhǎng)為a,
由題意得當(dāng)正方體體積最大時(shí):${a}^{2}+(\frac{\sqrt{2}}{2}a)^{2}$=R2,
∴R=$\frac{\sqrt{6}}{2}a$,
∴所得工件體積與原料體積之比的最大值為:
$\frac{{a}^{3}}{\frac{1}{2}×\frac{4}{3}π{R}^{3}}$=$\frac{{a}^{3}}{\frac{1}{2}×\frac{4}{3}×(\frac{\sqrt{6}}{2})^{3}}$=$\frac{\sqrt{6}}{3π}$.
故選:A.
點(diǎn)評(píng) 本題考查兩個(gè)幾何體的體積之比的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{13}{15}$ | B. | $\frac{2}{81}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 2 | C. | -1或2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2} | B. | {2} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,4) | B. | (2,4) | C. | (-2,4) | D. | (-4,4) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com