6.已知函數(shù)f(x)=|x-2|+|x+a|.
(1)若a=1,解不等式 f(x)≤2|x-2|;
(2)若f(x)≥2恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)將a=1帶入不等式,兩邊平方,解出即可;(2)求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.

解答 解:(1)當(dāng)a=1時(shí),f(x)≤2|x-2|,
即|x+1|≤|x-2|,即(x+1)2≤(x-2)2
解得:x≤$\frac{1}{2}$.
(2)f(x)=|x-2|+|x+a|≥|x-2-(x+a)|=|a+2|,
若f(x)≥2恒成立,只需|a+2|≥2,
即a+2≥2或a+2≤-2,解得:a≥0或a≤-4.

點(diǎn)評 本題考查了解絕對值不等式問題,考查求函數(shù)最值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不必要也不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影為BC的中點(diǎn),D是B1C1的中點(diǎn).
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求四棱錐A1-BB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線經(jīng)過點(diǎn)P(1,2),且與直線y=2x+3平行,則該直線方程為y=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:x≠0,比較(x2+1)2與x4+x2+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{m}{x}$+$\frac{1}{2}$lnx-1(m∈R)的兩個(gè)零點(diǎn)為x1,x2(x1<x2).
(1)求實(shí)數(shù)m的取值范圍;
(2)求證:$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為( 。
A.$\frac{\sqrt{6}}{3π}$B.$\frac{\sqrt{6}}{6π}$C.$\frac{3\sqrt{2}}{8π}$D.$\frac{3\sqrt{2}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|y=$\sqrt{m+1-x}$},B={x|x<-4或x>2}
(1)若m=-2,求A∩(∁RB);
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若經(jīng)過點(diǎn)(-4,a),(-2,6)的直線與直線x-2y-8=0垂直,則a的值為( 。
A.$\frac{5}{2}$B.$\frac{2}{5}$C.10D.-10

查看答案和解析>>

同步練習(xí)冊答案