【題目】已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,橢圓與直線相切于點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于兩點(diǎn)(, 不是長軸端點(diǎn)),且以為直徑的圓過橢圓軸正半軸上的頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用點(diǎn)在橢圓上及相切關(guān)系布列方程組,即可解得橢圓的標(biāo)準(zhǔn)方程;

(2)聯(lián)立方程易得: 為直徑的圓過橢圓軸正半軸上的頂點(diǎn),,即,經(jīng)檢驗(yàn)得到結(jié)果.

試題解析:

法一(Ⅰ)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為,

在橢圓上,∴

∵橢圓與直線相切,∴

由①②知,

故所求橢圓方程為

法二:設(shè)橢圓為, )則它在點(diǎn)處的切線為,它與表示同一直線,∴, ,

故所求橢圓方程為.

(Ⅱ)設(shè), ,聯(lián)立

,

,

因?yàn)橐?/span>為直徑的圓過橢圓的上頂點(diǎn)

當(dāng)時(shí),直線過定點(diǎn)與已知矛盾

當(dāng)時(shí),直線過定點(diǎn)滿足

所以,直線過定點(diǎn),定點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為遞增的等差數(shù)列,,,,其中

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的前項(xiàng)和

3)設(shè),求使不等式對(duì)一切均成立的最大實(shí)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·北京卷)如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,PAPD,PAPD,ABAD,AB1AD2,ACCD.

(1)求證:PD⊥平面PAB;

(2)求直線PB與平面PCD所成角的正弦值;

(3)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若函數(shù)處的切線方程為,求 的值;

(Ⅱ)若, 求函數(shù)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于AB兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

1)求圓心C的坐標(biāo)及半徑r的大;

2)已知不過原點(diǎn)的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

3)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

)求的取值范圍.

)記兩個(gè)極值點(diǎn) ,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廟會(huì)是我國古老的傳統(tǒng)民俗文化活動(dòng),又稱“廟市”或 “節(jié)場”.廟會(huì)大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會(huì)上有豐富多彩的文化娛樂活動(dòng),如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會(huì),每人均獲得砸一顆金蛋的機(jī)會(huì).游戲開始前,甲、乙、丙、丁四位同學(xué)對(duì)游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:

甲說:“我或乙能中獎(jiǎng)”; 乙說:“丁能中獎(jiǎng)”;

丙說:“我或乙能中獎(jiǎng)”; 丁說:“甲不能中獎(jiǎng)”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于若數(shù)列滿足則稱這個(gè)數(shù)列為“數(shù)列”.

(Ⅰ)已知數(shù)列1, 是“數(shù)列”,求實(shí)數(shù)的取值范圍;

(Ⅱ)是否存在首項(xiàng)為的等差數(shù)列為“數(shù)列”,且其前項(xiàng)和使得恒成立?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說明理由;

(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若試判斷數(shù)列是否為“數(shù)列”,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案