A. | -2 | B. | 2 | C. | 3 | D. | -3 |
分析 定義在R上的函數(shù)f(x)關(guān)于點(2,0)對稱,可得f(2-x)=f(2+x).又對任意的實數(shù)x都滿足f(x)=f(2-x),可得f(x+2)=f(x).于是f(2015)=f(2×1007+1)=f(1).而f(-5)=f(2-7)=f(2+7)=f(1),即可得出.
解答 解:∵定義在R上的函數(shù)f(x)關(guān)于點(2,0)對稱,
∴f(2-x)=f(2+x).
又對任意的實數(shù)x都滿足f(x)=f(2-x),
∴f(x+2)=f(x),因此函數(shù)f(x)是周期為2的函數(shù).
∴f(2015)=f(2×1007+1)=f(1).
又-2=f(-5)=f(2-7)=f(2+7)=f(1),
∴f(1)=-2.
∴f(2015)=-2.
故選:A.
點評 本題考查了抽象函數(shù)的周期性對稱性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{34}$ | B. | 10 | C. | $8\sqrt{2}$ | D. | $6\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{{\sqrt{3}}}{3}$ | D. | -$\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $±\frac{1}{2}$ | B. | $±\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com