A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{5\sqrt{2}}{4}$ |
分析 由題意結(jié)合正弦函數(shù)、余弦函數(shù)的圖象,求得A、B、C三點(diǎn)的坐標(biāo),即可求得△ABC的面積.
解答 解:函數(shù)f(x)=sin(πx+$\frac{π}{4}$)和函數(shù)g(x)=cos(πx+$\frac{π}{4}$)
在區(qū)間[-$\frac{5}{4}$,$\frac{7}{4}$]上的圖象交于A,B,C三點(diǎn),
令sin(πx+$\frac{π}{4}$)=cos(πx+$\frac{π}{4}$),x∈[-$\frac{5}{4}$,$\frac{7}{4}$],
解得x=-1,0,1,
可得A(-1,-$\frac{\sqrt{2}}{2}$)、B(0,$\frac{\sqrt{2}}{2}$)、C(1,-$\frac{\sqrt{2}}{2}$),
則△ABC的面積為S=$\frac{1}{2}$•[$\frac{\sqrt{2}}{2}$-(-$\frac{\sqrt{2}}{2}$)]•[1-(-1)]=$\sqrt{2}$.
故選:C.
點(diǎn)評(píng) 本題主要考查了正弦函數(shù)、余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0] | B. | [0,3) | C. | (3,4] | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -7 | C. | 1 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com