已知數(shù)列的前項和為
(1)若數(shù)列是等比數(shù)列,滿足, 是,的等差中項,求數(shù)列的通項公式;
(2)是否存在等差數(shù)列,使對任意都有?若存在,請求出所有滿足條件的等差數(shù)列;若不存在,請說明理由.
(1)設(shè)等比數(shù)列的首項為,公比為,
依題意,有即
由 得 ,解得或.
當(dāng)時,不合題意舍;
當(dāng)時,代入(2)得,所以, .
(2)假設(shè)存在滿足條件的數(shù)列,設(shè)此數(shù)列的公差為,則
方法1:,得
對恒成立,
則
解得或此時,或.
故存在等差數(shù)列,使對任意都有.其中,
或.
方法2:令,,得,
令,得,
①當(dāng)時,得或,
若,則,,,對任意都有;
若,則,,,不滿足.
②當(dāng)時,得或,
若,則,,,對任意都有;
若,則,,,不滿足.
綜上所述,存在等差數(shù)列,使對任意都有.其中,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
等比數(shù)列的公比為,其前項的積為,并且滿足條件,,.給出下列結(jié)論:①;②;③的值是中最大的;④使成立的最大自然數(shù)等于,其中正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列前項和為,關(guān)于數(shù)列有下列命題:
(1)若則既是等差數(shù)列又是等比數(shù)列;
(2)若,則為等差數(shù)列;
(3)若為等比數(shù)列,則成等比數(shù)列;
(4)若則是等比數(shù)列;
其中正確的命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
解: (1)由已知得,令,得,
要取得極值,方程必須有解,
所以△,即, 此時方程的根為
,,
所以
當(dāng)時,
x | (-∞,x1) | x 1 | (x1,x2) | x2 | (x2,+∞) |
f’(x) | + | 0 | - | 0 | + |
f (x) | 增函數(shù) | 極大值 | 減函數(shù) | 極小值 | 增函數(shù) |
所以在x 1, x2處分別取得極大值和極小值.
當(dāng)時,
x | (-∞,x2) | x 2 | (x2,x1) | x1 | (x1,+∞) |
f’(x) | - | 0 | + | 0 | - |
f (x) | 減函數(shù) | 極小值 | 增函數(shù) | 極大值 | 減函數(shù) |
所以在x 1, x2處分別取得極大值和極小值.
綜上,當(dāng)滿足時, 取得極值.
(2)要使在區(qū)間上單調(diào)遞增,需使在上恒成立.
即恒成立, 所以
設(shè),,
令得或(舍去),
當(dāng)時,,當(dāng)時,單調(diào)增函數(shù);
當(dāng)時,單調(diào)減函數(shù),
所以當(dāng)時,取得最大,最大值為.
所以
當(dāng)時,,此時在區(qū)間恒成立,所以在區(qū)間上單調(diào)遞增,當(dāng)時最大,最大值為,所以
綜上,當(dāng)時, ; 當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù).
(1)對于任意實(shí)數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個實(shí)根,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com