設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則
xy
z
取得最大值時,
2
x
+
1
y
+
2
z
的取值范圍為
 
考點:基本不等式在最值問題中的應(yīng)用
專題:計算題,不等式的解法及應(yīng)用
分析:由題意,z=x2-3xy+4y2,代入
xy
z
化簡可得
1
x
y
+4
y
x
-3
,從而得
xy
z
的最大值是1,此時x=2y,從而代入
2
x
+
1
y
+
2
z
可化得
2
x
+
1
y
+
2
z
=
2
2y
+
1
y
+
2
2y2
=(
1
y
+1)2-1,從而求其取值范圍.
解答: 解:由題意,z=x2-3xy+4y2,
xy
z
=
xy
x2-3xy+4y2
=
1
x
y
+4
y
x
-3

x
y
+4
y
x
≥4,(當(dāng)且僅當(dāng)x=2y時,等號成立),
xy
z
的最大值為1.
此時,z=xy,x=2y;
2
x
+
1
y
+
2
z
=
2
2y
+
1
y
+
2
2y2
=(
1
y
+1)2-1,
∵x,y,z都是正實數(shù),
1
y
+1>1,
∴(
1
y
+1)2-1>0,
故(
1
y
+1)2-1的取值范圍為(0,+∞),
故答案為:(0,+∞).
點評:本題考查了基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(
3
,3)
在冪函數(shù)f(x)的圖象上,則f(x)的表達(dá)式為( 。
A、f(x)=x
1
2
B、f(x)=x-
1
2
C、f(x)=x2
D、f(x)=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a、b、c成等比數(shù)列,logca、logbc、logab成等差數(shù)列,則公差d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+y2=1,P
是圓x2+y2=16上任意一點,過P作橢圓的切線PA、PB,切點分別為A、B,則
PA
PB
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2-mx+3在x∈[2,+∞)是增函數(shù),不等式t2+4≥m恒成立,則t范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式cosθ(1-x)2-2x(1-x)+2
2
x2sinθ≥0對一切x∈[0,1]恒成立,則θ的取值范圍是(  )
A、[kπ+
π
8
,kπ+
8
](k∈Z)
B、[2kπ+
π
8
,2kπ+
8
](k∈Z)
C、[kπ+
π
12
,kπ+
12
](k∈Z)
D、[2kπ+
π
12
,2kπ+
12
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三個條件:
①對任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;則稱函數(shù)f(x)為理想函數(shù).
下面有三個命題:
①若函數(shù)f(x)為理想函數(shù),則f(0)=0;
②函數(shù)f(x)=2x-1(x∈[0,1])是理想函數(shù);
③若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0;
其中正確的命題個數(shù)有(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上給定一曲線y2=2x.
( 1)設(shè)點A的坐標(biāo)為(
2
3
,0),求曲線上距點A最近的點P坐標(biāo)及相應(yīng)的距離|PA|;
(2)設(shè)點A的坐標(biāo)為(a,0)a∈R,求曲線上的點到點A距離的最小值d,并寫出d=f(a)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=
1
3
,an=
an-1
3an-1+1
(n≥2,n∈N*),
(1)分別求出a2,a3,a4
(2)猜想通項公式an
(3)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案