【題目】設(shè)、為雙曲線上的兩點(diǎn),為線段的中點(diǎn),線段的垂直平分線與雙曲線交于兩點(diǎn)

(1)確定的取值范圍

(2)試判斷、四點(diǎn)是否共圓?并說(shuō)明理由

【答案】(1) (2) 答案見(jiàn)解析.

【解析】

(1)依題意,可設(shè)

代入雙曲線方程并整理得:

設(shè)點(diǎn),為方程①的兩個(gè)不同實(shí)根,于是,

②且,

為線段的中點(diǎn),因此,

,

代入式②得:

為線段的垂直平分線,故:

將上式代入雙曲線方程并整理得:

由題意,知方程③也有兩個(gè)不同實(shí)根,

,

,故.

(2)設(shè)點(diǎn),線段的中點(diǎn)為,

、為方程③的兩個(gè)根,

于是,

,,

從而,由弦長(zhǎng)公式得:

,

又方程①即,

類(lèi)似地,

顯然,,

為線段的垂直平分線,

假設(shè)存在,使得、、四點(diǎn)共圓則必為該圓的直徑其圓心為點(diǎn),

又點(diǎn)到直線的距離為

由勾股定理得:

,則,

故當(dāng)時(shí),、、、四點(diǎn)均在以為圓心、為半徑的圓上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng),寬,高分別為4,3,5,現(xiàn)有一甲殼蟲(chóng)從點(diǎn)出發(fā)沿長(zhǎng)方體表面爬行到點(diǎn)來(lái)獲取食物.

1)甲殼蟲(chóng)想盡快獲取食物可通過(guò)哪些路徑獲。

2)哪條獲取食物的路徑最短?最短為多少?

3)此類(lèi)問(wèn)題的一般處理方法是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;

(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱(底面為正三角形,側(cè)棱和底面垂直)的所有棱長(zhǎng)都為2,的中點(diǎn),O中點(diǎn).

1)求證:平面.

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接旅游旺季的到來(lái),少林寺設(shè)置了一個(gè)專(zhuān)門(mén)安排旅客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準(zhǔn)備的食物有些月份剩余不少,浪費(fèi)很?chē)?yán)重,為了控制經(jīng)營(yíng)成本,減少浪費(fèi),就想適時(shí)調(diào)整投入.為此他們統(tǒng)計(jì)每個(gè)月入住的游客人數(shù),發(fā)現(xiàn)每年各個(gè)月份來(lái)客棧入住的游客人數(shù)會(huì)呈現(xiàn)周期性的變化,并且有以下規(guī)律:

①每年相同的月份,入住客棧的游客人數(shù)基本相同;

②入住客棧的游客人數(shù)在月份最少,在月份最多,相差約人;

月份入住客棧的游客約為人,隨后逐月增加直到月份達(dá)到最多.

1)試用一個(gè)正弦型三角函數(shù)描述一年中入住客棧的游客人數(shù)與月份之間的關(guān)系;

2)請(qǐng)問(wèn)哪幾個(gè)月份要準(zhǔn)備份以上的食物?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),總存在實(shí)數(shù),使成立,則稱(chēng)關(guān)于參數(shù)的不動(dòng)點(diǎn).

1)當(dāng),時(shí),求關(guān)于參數(shù)的不動(dòng)點(diǎn);

2)若對(duì)任意實(shí)數(shù),函數(shù)恒有關(guān)于參數(shù)兩個(gè)不動(dòng)點(diǎn),求的取值范圍;

3)當(dāng),時(shí),函數(shù)上存在兩個(gè)關(guān)于參數(shù)的不動(dòng)點(diǎn),試求參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于,),點(diǎn)在線段上,且滿(mǎn)足.已知,,設(shè).

1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿(mǎn)足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;

2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿(mǎn)足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了31日至35日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差(℃)

10

11

13

12

9

發(fā)芽數(shù)(顆)

23

25

30

26

16

1)從31日至35日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“”的概率;

2)該小組發(fā)現(xiàn)種子的發(fā)芽數(shù)(顆)與晝夜溫差(℃)呈線性相關(guān)關(guān)系,試求:線性回歸方程.

(參考公式:線性回歸方程中系數(shù)計(jì)算公式,.其中,表示樣本均值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(2)若 上的最小值為-2,求m的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案