已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+x在(0,+∞)上單調(diào)遞增,則a的取值范圍為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用f(x)在(0,+∞)上單調(diào)遞增,則f′(x)≥0恒成立,即可求a的取值范圍.
解答: 解:∵f(x)=
1
3
x3-
1
2
ax2+x,
∴f′(x)=x2-ax+1,
∵f(x)在(0,+∞)上單調(diào)遞增,
∴f'(x)≥0恒成立,
則△=a2-4≤0,
即a2≤4,
∴-2≤a≤2,
故答案為:[-2,2]
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,要求熟練掌握導(dǎo)數(shù)和函數(shù)性質(zhì)之間的關(guān)系,考查學(xué)生的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1+cosx,1),
b
=(1+sinx,m).
(1)若m=1,且
a
b
時(shí),求x的值;
(2)記f(x)=
a
b
,若f(x)>0對(duì)任意的x∈R恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2-2x-3, x≤0
-x2, x>0
,若f(a)=-4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y的等差中項(xiàng),等比中項(xiàng)的平方,1構(gòu)成一個(gè)等差數(shù)列,那么x+y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(-x2+ax+a),若f(x)>1對(duì)一切x∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(1,1),
OB
=(2,3),且
OC
OA
,
AC
OB
,則向量
OC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列特殊的不等式:
52-22
5-2
≥2•
7
2
          
45-35
42-32
5
2
•(
7
2
3
98-28
93-23
8
3
•(
11
2
5 
910-510
95-55
≥2•75

由以上特殊不等式,可以猜測(cè):當(dāng)a>b>0,s、r∈Z時(shí),有
as-bs
ar-br
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5位同學(xué)圍成一圈依次循環(huán)報(bào)數(shù),規(guī)定:第一位同學(xué)報(bào)的數(shù)是1,第二位同學(xué)報(bào)的數(shù)也是1,之后每位同學(xué)所報(bào)的數(shù)都是前兩位同學(xué)報(bào)的數(shù)之和;若報(bào)的數(shù)為3的倍數(shù),則報(bào)該數(shù)的同學(xué)需拍手一次.已知甲同學(xué)第一個(gè)報(bào)數(shù).
(1)當(dāng)5位同學(xué)依次循環(huán)共報(bào)20個(gè)數(shù)時(shí),甲同學(xué)拍手的次數(shù)為
 
;
(2)當(dāng)甲同學(xué)開始第10次拍手時(shí),這5位同學(xué)已經(jīng)循環(huán)報(bào)數(shù)到第
 
個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2-t)成立,那么在函數(shù)值f(-1)、f(0)、f(2)、f(5)中,最小的一個(gè)不可能是( 。
A、f(5)B、f(2)
C、f(-1)D、f(1)

查看答案和解析>>

同步練習(xí)冊(cè)答案