觀察下列特殊的不等式:
52-22
5-2
≥2•
7
2
          
45-35
42-32
5
2
•(
7
2
3
98-28
93-23
8
3
•(
11
2
5 
910-510
95-55
≥2•75

由以上特殊不等式,可以猜測(cè):當(dāng)a>b>0,s、r∈Z時(shí),有
as-bs
ar-br
 
考點(diǎn):歸納推理
專題:推理和證明
分析:把各式的右邊轉(zhuǎn)化,可以觀察到其規(guī)律,問題得以解決.
解答: 解:
52-22
5-2
≥2•
7
2
=
2
1
•(
5+2
2
)
      
45-35
42-32
5
2
•(
7
2
3=
5
2
•(
7
2
3=
5
2
•(
4+3
2
5-2
98-28
93-23
8
3
•(
11
2
5=
8
3
•(
9+2
2
8-3
910-510
95-55
≥2•75=
10
5
9+5
2
10-5,
由以上特殊不等式,可以猜測(cè):當(dāng)a>b>0,s、r∈Z時(shí),有
as-bs
ar-br
s
r
(
a+b
2
)s-r
,
故答案為:
s
r
(
a+b
2
)s-r
點(diǎn)評(píng):本題考查了歸納推理的問題,關(guān)鍵是找到規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx+1,g(x)=ax+
a-1
x
,F(xiàn)(X)=f(x)-g(x).
(1)當(dāng)a=2時(shí),求函數(shù)F(x)在區(qū)間[
1
e
,e]上的最大值;
(2)若a≤
1
2
,求函數(shù)F(x)的單調(diào)區(qū)間;
(3)在曲線y=f(x)上任取兩點(diǎn)P(x1,y1),Q(x2,y2),(x1<x2),直線PQ的斜率為k,試探索:kx1,1,kx2 三者的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項(xiàng)和為Sn,若不等式an2+
Sn2
n2
≥ma12對(duì)任意等差數(shù)列{an}及任意正整數(shù)n都成立,則實(shí)數(shù)m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+x在(0,+∞)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的“廣義距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)Z均成立;
現(xiàn)在給出四個(gè)二元函數(shù):
①f(x,y)=x2+y2;
②f(x,y)=(x-y)2
③f(x,y)=
x2+y2-xy
;
④f(x,y)=sin(x-y);
能夠稱為關(guān)于x、y的“廣義距離”的函數(shù)的所有序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線性方程組的增廣矩陣為
11
0a
6
2
,若該線性方程組解為
4
2
,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的外接圓的圓心為O,半徑為1,
OA
+
OB
+
OC
=
0
,則
OA
OB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的頂點(diǎn)為P,PA,PB,PC為三條棱,且PA,PB,PC兩兩垂直,又PA=2,PB=3,PC=4,則三棱錐P-ABC的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)復(fù)數(shù)z=
1+i
1-i
等于( 。
A、1B、-1C、-iD、i

查看答案和解析>>

同步練習(xí)冊(cè)答案