如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°.以AB,BC為鄰邊作平行四邊形ABCD,連接DA1和DC1. 
(Ⅰ)求證:A1D∥平面BCC1B1;
(Ⅱ)求證:AC⊥平面ADA1
考點(diǎn):直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)線面平行的判定定理即可證明;
(Ⅱ)線面垂直的判定定理即可證明.
解答: (本小題共13分)
證明:
(Ⅰ)連結(jié)B1C,∵三棱柱ABC-A1B1C1中A1B1∥AB且A1B1=AB,
由ABCD為平行四邊形得CD∥AB且CD=AB
∴A1B1∥CD且A1B1=CD------------------(2分)
∴四邊形A1B1CD為平行四邊形,A1D∥B1C---------(4分)
∵B1C?平面BCC1B1,A1D?平面BCC1B1-----------(6分)
∴A1D∥平面BCC1B1------------------(7分)
(Ⅱ)∵平行四邊形ABCD中,AC⊥BC,
∴AC⊥AD------------------(2分)
∵AA1⊥平面ABC,AC?平面ABC
∴AA1⊥AC------------------(4分)
又∵AD∩AA1=A,AA1?平面ADA1,AD?平面ADA1
∴AC⊥平面ADA1.------------------(6分)
點(diǎn)評(píng):本題考查線面平行與線面垂直的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“若α=
π
3
,則tanα=
3
”的逆否命題是( 。
A、若α≠
π
3
,則tanα=
3
B、若α=
π
3
,則tanα≠
3
C、若tanα≠
3
,則α≠
π
3
D、若tanα=
3
,則α=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在x∈[-2,3],使不等式2x-x2≥a成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-8]
C、[1,+∞)
D、[-8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為考察高中生的性別與喜歡數(shù)學(xué)課程之間的關(guān)系,在某學(xué)校高中生中隨機(jī)抽取了250名學(xué)生,得到如圖的二維條形圖.
(1)根據(jù)二維條形圖,完形填空2×2列聯(lián)表:
合計(jì)
喜歡數(shù)學(xué)課程
不喜歡數(shù)學(xué)課程
合計(jì)
(2)對(duì)照如表,利用列聯(lián)表的獨(dú)立性檢驗(yàn)估計(jì),請(qǐng)問有多大把握認(rèn)為“性別與喜歡數(shù)學(xué)有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程mx2+(m-3)x+1=0在(0,+∞)至少有一個(gè)實(shí)數(shù)根,命題q:實(shí)數(shù)m滿足em<a,且¬q是¬p的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,且滿足(b-c-a)(b-c+a)+bc=0.
(1)求∠A的大。
(2)若f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱臺(tái)ABC-DEF中,CF⊥平面DEF,AB⊥BC.
(Ⅰ)設(shè)平面AEC∩平面DEF=a,求證DF∥a; 
(Ⅱ)若EF=CF=2BC,試同在線段BE上是否存在點(diǎn)G,使得平面DFG⊥平面CDE,若存在,請(qǐng)確定G點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知式子(2x2+
1
x
5
(Ⅰ)求展開式中含
1
x2
的項(xiàng);
(Ⅱ)若(2x2+
1
x
5的展開式中各二項(xiàng)式系數(shù)的和比(
x
+
2
x
n的展開式中的第三項(xiàng)的系數(shù)少28,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形ABCD,BC=BD,AC=AD,E是CD邊的中點(diǎn).在AE上的一個(gè)動(dòng)點(diǎn)P,討論BP與CD是否存在垂直關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案