【題目】祖暅原理冪勢既同,則積不容異中的指面積,即是高,意思是:若兩個等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設夾在兩個平行平面之間的幾何體的體積分別為,它們被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則恒成立的(

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

【答案】A

【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合祖暅原理進行判斷即可.

根據(jù)祖暅原理,由恒成立可得到,反之不一定.

解:由祖暅原理知,若,總相等,則相等成立,即充分性成立,

,相等,則只需要底面積和高相等即可,則,不一定相等,即必要性不成立,

恒成立充分不必要條件.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】,若函數(shù)4個不同的零點,且,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax,其中a為實數(shù).

(1)求出f(x)的單調(diào)區(qū)間;

(2)在a<1時,是否存在m>1,使得對任意的x∈(1,m),恒有f(x)+a>0,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以A,B,CD,E,F為頂點的多面體中,四邊形是菱形,

1)求證:平面ABC⊥平面ACDF

2)求平面AEF與平面ACE所成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)gx)=bx1),其中a≠0b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調(diào)區(qū)間;

2)已知函數(shù)fx)的曲線與函數(shù)gx)的曲線有兩個交點,設兩個交點的橫坐標分別為x1x2,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為的正方體中,OAC的中點,E是線段D1O上一點,且D1E=λEO.

(1)若λ=1,求異面直線DECD1所成角的余弦值;

(2)若平面CDE平面CD1O,λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知λ,μ為常數(shù),且為正整數(shù),λ≠1,無窮數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,對任意的正整數(shù)n,Sn=λanμ.記數(shù)列{an}中任意兩不同項的和構(gòu)成的集合為A

1)證明:無窮數(shù)列{an}為等比數(shù)列,并求λ的值;

2)若2015∈A,求μ的值;

3)對任意的n∈N*,記集合Bn={x|3μ2n1x3μ2n,x∈A}中元素的個數(shù)為bn,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地在國慶節(jié)天假期中的樓房認購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學根據(jù)折線圖對這天的認購量與成交量作出如下判斷:①成交量的中位數(shù)為;②認購量與日期正相關;③日成交量超過日平均成交量的有天,則上述判斷中正確的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年年底,三部進口影片登錄銀屏,包括《海王》,《龍貓》和《蜘蛛俠》,經(jīng)過了解,電影比《蜘蛛俠》早上映一周,電影的票房比《龍貓》高,《蜘蛛俠》的票房比電影低,據(jù)此可以判斷(

A.是《海王》,是《蜘蛛俠》,是《龍貓》

B.是《蜘蛛俠》,是《龍貓》,是《海王》

C.是《龍貓》,是《海王》,是《蜘蛛俠》

D.是《龍貓》,是《蜘蛛俠》,是《海王》

查看答案和解析>>

同步練習冊答案