求下列函數(shù)的定義域.
(1)f(x)=
1-2x
+
1
x+3
;
(2)f(x)=
lg(x+1)
x-1
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不等于0求解不等式組得答案;
(2)由分式的分母不等于0,對數(shù)式的真數(shù)大于0聯(lián)立不等式組求解x的集合得答案.
解答: 解:(1)由
1-2x≥0
x+3>0
,解得-3<x≤0.
∴f(x)=
1-2x
+
1
x+3
的定義域為(-3,0];
(2)由
x+1>0
x-1≠0
,解得x>-1且x≠1.
∴f(x)=
lg(x+1)
x-1
的定義域為{x|x>-1且x≠1}.
點評:本題考查了函數(shù)定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面內(nèi)有△ABC,且P表示這個平面內(nèi)的動點,則屬于集合{P|PA=PB}∩{P|PA=PC}的點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列5種說法:
①在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等;
②標(biāo)準(zhǔn)差越小,樣本數(shù)據(jù)的波動也越小
③回歸直線過樣本點的中心(
.
x
,
.
y
);
④在回歸分析中對于相關(guān)系數(shù)r,通常,當(dāng)|r|大于0,75時,認(rèn)為兩個變量存在著很強的線性相關(guān)關(guān)糸.
⑤極點與直角坐標(biāo)系的原點重合,極軸與x軸非負(fù)半軸重合,曲線C的極坐標(biāo)方程為ρ=2sinθ,直線l的參數(shù)方程為
x=t
y=2+
3
t
(t為參數(shù)),直線l與曲線C交于A、B,則 線段AB的長等于
3

其中說法正確的是
 
(請將正確說法的序號寫在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|log3x|,若f(a)=f(b)且a≠b.則
1
a
+
2
b
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+x-6y+m=0和直線l:x+y-3=0
(Ⅰ)求m的取值范圍;
(Ⅱ)當(dāng)圓C與直線l相切時,求圓C關(guān)于直線l的對稱圓方程;
(Ⅲ)若圓C與直線l交于P、Q兩點,是否存在m,使以PQ為直徑的圓經(jīng)過原點O?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知BC=7,AC=8,AB=9,試求AC邊上的中線長
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),且最小值是2014,那么函數(shù)f(x)在區(qū)間[-7,-3]上是( 。
A、增函數(shù)且最小值為-2014
B、增函數(shù)且最大值為-2014
C、減函數(shù)且最小值為-2014
D、減函數(shù)且最大值為-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人練習(xí)射擊,命中目標(biāo)的概率分別為
1
2
1
3
,甲、乙兩人各射擊一次,有下列說法:
①目標(biāo)恰好被命中一次的概率為
1
2
+
1
3
;
②目標(biāo)恰好被命中兩次的概率為
1
2
×
1
3

③目標(biāo)被命中的概率為
1
2
×
2
3
+
1
2
×
1
3
=
1
2
;
④目標(biāo)被命中的概率為1-
1
2
×
2
3
;
以上說法正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+1,x≥1
ax2+x+1,x<1
,則“-
1
2
≤a≤0”是“f(x)在R上單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案