【題目】如圖①,在矩形ABCD中,AB=2,BC=1,E是CD的中點(diǎn),將三角形ADE沿AE翻折到圖②的位置,使得平面AED′⊥平面ABC.
(1)在線段BD'上確定點(diǎn)F,使得CF∥平面AED',并證明;
(2)求△AED'與△BCD'所在平面構(gòu)成的銳二面角的正切值.
【答案】(1)點(diǎn)F是線段BD'的中點(diǎn),見解析(2).
【解析】
(1)取BD'的中點(diǎn),記AE,BC延長線交于點(diǎn)M,由平面幾何知識可得點(diǎn)C是BM的中點(diǎn),可得CF∥MD',可得CF∥平面AED';
(2)先根據(jù)面面垂直的性質(zhì)可得BE⊥平面AED',在平面AED'內(nèi)作EN⊥MD',可得∠BNE就是△AED'與△BCD'所在平面構(gòu)成的銳二面角的平面角,最后解三角形可得銳二面角的正切值.
(1)點(diǎn)F是線段BD'的中點(diǎn)時,CF∥平面AED'.
證明:記AE,BC延長線交于點(diǎn)M,
∵AB=2EC,∴點(diǎn)C是BM的中點(diǎn),
∴CF∥MD',而MD'在平面AED'內(nèi),CF在平面AED'外,
∴CF∥平面AED';
(2)在矩形ABCD中,AB=2,CD=1,BE⊥AE,
∵平面AED'⊥平面ABC,且交線是AE,∴BE⊥平面AED',
在平面AED'內(nèi)作EN⊥MD',連接BN,則BN⊥MD′.
∴∠BNE就是△AED'與△BCD'所在平面構(gòu)成的銳二面角的平面角,
求解三角形可得,,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,拋物線與圓的相交弦長為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為拋物線的焦點(diǎn),為拋物線上兩點(diǎn),,若的面積為,且直線的斜率存在,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2-4x-5=0”的充分不必要條件
C.命題“若x<-1,則x2-2x-3>0”的否定為:“若x≥-1,則x2-2x-3≤0”
D.已知命題p:x∈R,x2+x-1<0,則p:x∈R,x2+x-1≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同的兩點(diǎn),且的中點(diǎn)為,線段的垂直平分線為,直線與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長為2個單位)的頂點(diǎn)處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點(diǎn)數(shù)為,則棋子就按逆時針方向行走個單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)處的所有不同走法共有( )
A. 22種 B. 24種 C. 25種 D. 27種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則函數(shù)在上的所有零點(diǎn)之和為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)
等邊△ABC的邊長為3,點(diǎn)D,E分別為AB,AC上的點(diǎn),且滿足(如圖①),將△ADE沿DE折起到△A1DE的位置,使二面角A1﹣DE﹣B成直二面角,連接A1B,A1C(如圖②).
(1)求證:A1D⊥平面BCED;
(2)在線段BC上是否存在點(diǎn)P(不包括端點(diǎn)),使直線PA1與平面A1BD所成的角為60°?若存在,求出A1P的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程,并求時直線的普通方程;
(2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為。
(1)求、的值;
(2)如果當(dāng),且時, ,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com