考點:指數(shù)函數(shù)的圖像與性質
專題:函數(shù)的性質及應用
分析:(1)根據(jù)指數(shù)函數(shù)和二次函數(shù)的性質即可求出定義域,再根據(jù)指數(shù)函數(shù)的單調性和二次函數(shù)的最小值,即可求出值域,
(2)根據(jù)復合函數(shù)的單調性即可求出單調區(qū)間,同增異減.
解答:
解:(1)設u=x
2-2x-1,
由于函數(shù)y=
()u和u=x
2-2x-1的定義域都是(-∞,+∞),
故y=(
)
x2-2x-1的定義域為(-∞,+∞),
又u=x
2-2x-1=(x-1)
2-2≥-2,
因為函數(shù)y=
()u為減函數(shù),0<y≤
()-2=9,
故函數(shù)的值域為(0,9].
(2)由二次函數(shù)的性質可知,u=x
2-2x-1,在(-∞,1]上為減函數(shù),在(1,+∞)為增函數(shù),
又函數(shù)y=
()u為減函數(shù),
根據(jù)復合函數(shù)的單調性可知,
函數(shù)y=(
)
x2-2x-1在(-∞,1]上為增函數(shù),在(1,+∞)為減函數(shù).
點評:本題主要考查了復合函數(shù)的定義域值域和單調性,屬于基礎題.