【題目】已知函數(shù),,(常數(shù)且).
(Ⅰ)當與的圖象相切時,求的值;
(Ⅱ)設(shè),若存在極值,求的取值范圍.
【答案】(I) (Ⅱ)
【解析】
(Ⅰ)設(shè)切點為,再利用導數(shù)的幾何意義求出a的值;(Ⅱ)由題得,再對a分類討論,利用導數(shù)分析函數(shù)極值情況得到的取值范圍.
解:(Ⅰ)設(shè)切點為,,
所以過點的切線方程為,即,
所以,解得.
(Ⅱ)依題意,,,
當a>0時,令,則,
令,,令,,
所以,當時,單調(diào)遞減;當時,單調(diào)遞增.
若存在極值,則,即,
又時,,
所以,時,
在存在零點,且在左側(cè),在右側(cè),
即存在變號零點.
當a<0時,當時,單調(diào)遞增;當時,單調(diào)遞減.
若存在極值,則,即,
又時,,
所以,時,
在存在零點,且在左側(cè),在右側(cè),
即存在變號零點.
所以,若存在極值,.
科目:高中數(shù)學 來源: 題型:
【題目】已知是圓上的一個動點,過點作兩條直線,它們與橢圓都只有一個公共點,且分別交圓于點.
(Ⅰ)若,求直線的方程;
(Ⅱ)①求證:對于圓上的任意點,都有成立;
②求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,底面為平行四邊形,側(cè)面 ,分別是的中點,已知,,,.
(Ⅰ)證明:平面;
(Ⅱ)證明:;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓()的上頂點為,圓經(jīng)過點.
(1)求橢圓的方程;
(2)過點作直線交橢圓于,兩點,過點作直線的垂線交圓于另一點.若△PQN的面積為3,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)是檢測空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )
A. 該地區(qū)在該月2日空氣質(zhì)量最好
B. 該地區(qū)在該月24日空氣質(zhì)量最差
C. 該地區(qū)從該月7日到12日持續(xù)增大
D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負相關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)是檢測空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )
A. 該地區(qū)在該月2日空氣質(zhì)量最好
B. 該地區(qū)在該月24日空氣質(zhì)量最差
C. 該地區(qū)從該月7日到12日持續(xù)增大
D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負相關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為(,為參數(shù))
(1)求曲線的直角坐標方程;
(2)設(shè)直線與曲線交于、兩點,點的直角坐標為,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的動直線與圓相交于,兩點,是中點,與直線相交于.
(1)當與垂直時,求的方程;
(2)當時,求直線的方程;
(3)探究是否與直線的傾斜角有關(guān)?若無關(guān),求出其值;若有關(guān),請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com