Processing math: 100%
6.函數(shù)fx={a2x1x1ax1x1若f(x)在(-∞,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍為(2,4].

分析 利用分段函數(shù)以及函數(shù)的單調(diào)性列出不等式組,推出a的范圍即可.

解答 解:函數(shù)fx={a2x1x1ax1x1若f(x)在(-∞,+∞)上單調(diào)遞增,
可得{a20a1a31,解得a∈(2,4].
故答案為:(2,4].

點評 本題考查分段函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列1,12,13,14,…的一個通項公式是1n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)α、β為兩個不同的平面,l、m為兩條不同的直線,且l?α,m?β,有如下的兩個命題:①若α∥β,則l∥m;②若l⊥β,則α⊥β.那么( �。�
A.①是真命題,②是假命題B.①是假命題,②是真命題
C.①②都是真命題D.①②都是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是區(qū)間(0,+∞)上的減函數(shù),那么f(3)與f(2)的大小關(guān)系是f(3)<f(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l的參數(shù)方程為{x=132ty=3+12t(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4sinθπ6
(I)求圓C的直角坐標(biāo)方程;
(II)若P(x,y)是圓上的任意一點,求3x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算下列各式的值:
(Ⅰ)0.06413780+160.75+0.0112
(Ⅱ)已知log73=a,log74=b,求log748.(其值用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanθ=2,求下列各式的值.
(1)4sinθ2cosθ3sinθ+5cosθ;   
(2)1-4sinθcosθ+2cos2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時,f(x)=log2x,則f(f(14))=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知p:方程x2+mx+1=0有兩個不等的負(fù)根;q:方程4x2+4(m-2)x+1=0無實根.若p和q一真一假,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案