【題目】已知函數(shù),.
(1)求過點(diǎn)且與曲線相切的直線方程;
(2)設(shè),其中為非零實(shí)數(shù),若有兩個(gè)極值點(diǎn),且,求證:.
【答案】(1);(2)證明見解析
【解析】
(1)設(shè)切點(diǎn)為,對(duì)函數(shù)求導(dǎo),可得到切線斜率,再結(jié)合,二者聯(lián)立可求出切點(diǎn)坐標(biāo),及的值,進(jìn)而可求得切線方程;
(2)對(duì)函數(shù)求導(dǎo),分,和三種情況,分別討論函數(shù)的單調(diào)性,可知當(dāng)時(shí),有兩個(gè)極值點(diǎn),從而可得到,再結(jié)合,,從而要證,只需證明即可,構(gòu)造函數(shù),利用導(dǎo)函數(shù)證明,即可證明結(jié)論成立.
(1)由,可得,
設(shè)切點(diǎn)為,則切線斜率為,,
故,解得,故,
所以切線方程為,即.
(2),,
則,
①當(dāng),即時(shí),,函數(shù)在上單調(diào)遞增,無(wú)極值點(diǎn),不符合題意;
②當(dāng)時(shí),令,則,解得不成立,舍去,成立,此時(shí)在上單調(diào)遞減,在上單調(diào)遞增,只有一個(gè)極值點(diǎn),不符合題意;
③當(dāng)時(shí),令,則,解得成立,成立,此時(shí)函數(shù)有兩個(gè)極值點(diǎn),且,,
易知,故,
又,故,
所以要證,即證,
由,可知,
故只需證明即可,
構(gòu)造函數(shù),則,故函數(shù)在上單調(diào)遞增,
∴,即成立,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某項(xiàng)娛樂活動(dòng)的海選過程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競(jìng)賽選拔賽.已知成績(jī)合格的名參賽選手成績(jī)的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.
(1)求的值;
(2)估計(jì)這名參賽選手的平均成績(jī);
(3)根據(jù)已有的經(jīng)驗(yàn),參加競(jìng)賽選拔賽的選手能夠進(jìn)入正式競(jìng)賽比賽的概率為,假設(shè)每名選手能否通過競(jìng)賽選拔賽相互獨(dú)立,現(xiàn)有名選手進(jìn)入競(jìng)賽選拔賽,記這名選手在競(jìng)賽選拔賽中通過的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2,點(diǎn)E、F、M分別為C1D1,A1D1,B1C1的中點(diǎn),過點(diǎn)M的平面α與平面DEF平行,且與長(zhǎng)方體的面相交,交線圍成一個(gè)幾何圖形.
(1)在圖1中,畫出這個(gè)幾何圖形,并求這個(gè)幾何圖形的面積(不必說明畫法與理由)
(2)在圖2中,求證:D1B⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無(wú)窮數(shù)列,對(duì)每一個(gè)正整數(shù),該數(shù)列前項(xiàng)的最大值記為,第項(xiàng)之后各項(xiàng)的最小值記為,記.
(1)若數(shù)列的通項(xiàng)公式為,求數(shù)列的通項(xiàng)公式;
(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;
(3)若對(duì)任意恒成立,證明:數(shù)列的通項(xiàng)公式為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C:()的焦點(diǎn)F到直線的距離為.AB是過拋物線C焦點(diǎn)F的動(dòng)弦,O是坐標(biāo)原點(diǎn),過A,B兩點(diǎn)分別作此拋物線的切線,兩切線相交于點(diǎn)P.
(1)求證:.
(2)若動(dòng)弦AB不經(jīng)過點(diǎn),直線AB與準(zhǔn)線l相交于點(diǎn)N,記MA,MB,MN的斜率分別為,,.問:是否存在常數(shù)λ,使得在弦AB運(yùn)動(dòng)時(shí)恒成立?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】談祥柏先生是我國(guó)著名的數(shù)學(xué)科普作家,他寫的《數(shù)學(xué)百草園》、《好玩的數(shù)學(xué)》、《故事中的數(shù)學(xué)》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數(shù)學(xué)》中談老的一篇文章《五分鐘內(nèi)挑出埃及分?jǐn)?shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分?jǐn)?shù)(稱為埃及分?jǐn)?shù)).如用兩個(gè)埃及分?jǐn)?shù)與的和表示等.從這100個(gè)埃及分?jǐn)?shù)中挑出不同的3個(gè),使得它們的和為1,這三個(gè)分?jǐn)?shù)是________.(按照從大到小的順序排列)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且.
(1)的通項(xiàng)公式為__________;
(2)在、、、、這項(xiàng)中,被除余的項(xiàng)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)若與相交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點(diǎn);
(2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量,求每盤游戲出現(xiàn)音樂的概率,及隨機(jī)變量的期望;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com