【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別為AA1、AB、BB1、B1C1的中點(diǎn),則異面直線EF與GH所成的角等于(

A.45°
B.60°
C.90°
D.120°

【答案】B
【解析】解:如圖,連A1B、BC1、A1C1 , 則A1B=BC1=A1C1 ,
且EF∥A1B、GH∥BC1
所以異面直線EF與GH所成的角等于60°,
故選B.

【考點(diǎn)精析】利用異面直線及其所成的角對題目進(jìn)行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn , 已知對于任意的n∈Z+ , 均有Sn與1正的等比中項(xiàng)等于an與1的等差中項(xiàng).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖像與x軸恰有兩個公共點(diǎn),則c= ( )
A.-2或2
B.-9或3
C.-1或1
D.-3或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象過點(diǎn)P(0,2),且在點(diǎn)M(-1, )處的切線方程 。
(1)求函數(shù) 的解析式;
(2)求函數(shù) 的圖像有三個交點(diǎn),求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l,m是兩條不同的直線,α是一個平面,則下列命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l⊥α,l∥m,則m⊥α
C.若l∥α,mα,則l∥m
D.若l∥α,m∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓x2+y2﹣4x﹣4y﹣10=0上至少有三個不同點(diǎn)到直線l:ax+by=0的距離為 .則直線l的傾斜角的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處有公共切線,求a,b的值;
(2)當(dāng)a=3,b=﹣9時,函數(shù)f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案