集合A={x|ax2+2x+a=0}中有且只有一個元素,求a的值.
考點:集合的表示法
專題:集合
分析:當a為零時,方程是一元一次方程只有一解,符合題意,當a不等于零時,方程是一元二次方程,只需判別式為零即可.
解答: 解:當a=0時,A={0},滿足條件;
當a≠0時,集合A={x|ax2+2x+a=0}中有且只有一個元素,則△=4-4a2=0,解得a=±1;
∴a=-1,0,1.
點評:本題主要考查了元素與集合關系的判定,以及根的個數(shù)與判別式的關系,本題容易忽視系數(shù)a的討論,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于實數(shù)a和b,定義運算“?”:a?b=
a2-ab,a≤b
b2-ab,a>b
,設f(x)=(3x-1)?(x-1).且關于x的方程f(x)=m恰有三個不相等的實數(shù)根x1,x2,x3,則x1+x2+x3的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在△ABC中,已知b=3,c=3
3
,B=30°,求角A、角C和邊a;
(2)在△ABC中,a:b:c=3:5:7,求△ABC的最大角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
x-3,x≥5
f(x+2),x<5
,則f(2)的值為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2-2ax-3(a≠0)在[-1,2]上最大值為1,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系Oxyz中,已知點A(2,1,-1),則與點A關于原點對稱的點A1的坐標為( �。�
A、(-2,-1,1)
B、(-2,1,-1)
C、(2,-1,1)
D、(-2,-1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,且a2=b2+c2+bc,a=
3
,S為△ABC的面積,則S+
3
cosBcosC的最大值為
 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�