已知(ax+2b)6的展開式中x3與x4的系數(shù)之比為4:3,其中a>0,b≠0.
(1)求展開式中系數(shù)最大的項;
(2)令F(a,b)=
b3+16
a
,求F(a,b)的最小值.
考點:二項式定理的應(yīng)用
專題:計算題,二項式定理
分析:(1)確定a=2b,展開式中二項式系數(shù)最大即為系數(shù)最大的項;
(2)求出F(a,b)=
b3+16
a
,利用基本不等式求F(a,b)的最小值.
解答: 解:設(shè)通項為Tr+1=
C
r
6
(ax)6-r(2b)r=
C
r
6
a6-r(2b)rx6-r
,則依題意:
C
3
6
a3(2b)3
C
2
6
a4(2b)2
=
4
3

從而得到:a=2b.                                                 (4分)
(1)展開式(ax+2b)6=a6(x+1)6的二項式系數(shù)最大即為系數(shù)最大.即T4=
C
3
6
a6x3=20a6x3
(8分)
(2)由a=2b,得到:F(a,b)=
b3+16
a
=
b3+16
2b
=
1
2
(b2+
16
b
)=
1
2
(b2+
8
b
+
8
b
)≥
1
2
•3
3b2
8
b
8
b
=6

當(dāng)且僅當(dāng)b2=
8
b
,即b=2時,取等號,所以F(a,b)的最小值為6.(14分)
點評:本題考查二項式定理的應(yīng)用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的面積為2
3
,且b=2,A=60°,
(1)求c和a的值;
(2)求
b
sinB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
e-x
a
+
a
e-x
是定義在R上的函數(shù)
(1)f(x)可能是奇函數(shù)嗎?
(2)當(dāng)a=1時,試研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

包含甲在內(nèi)的甲、乙、丙3個人練習(xí)傳球,設(shè)傳球n次,每人每次只能傳一下,首先從甲手中傳出,第n次仍傳給甲,共有多少種不同的方法?為了解決上述問題,設(shè)傳球n次,第n次仍傳給甲的傳球方法種數(shù)為an;設(shè)傳球n次,第n次不傳給甲的傳球方法種數(shù)為bn.根據(jù)以上假設(shè)回答下列問題:
(1)求出a1,a2,b1的值;
(2)根據(jù)你的理解寫出an+1與bn的關(guān)系式;
(3)求a5的值及通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4
2
,且與橢圓
x2
2
+
y2
4
=1有相同的離心率.
(Ⅰ)求橢圓M的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與M有兩個交點A、B,且
OA
OB
?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且sin2B-
6
5
sinB+
9
25
=0.
(1)求sin(B+
π
4
)的值;
(2)若a=5,b=9,求cosA的值;
(3)若b=
7
,a+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品共x件,按1:2分為兩組檢查質(zhì)量,第一組平均質(zhì)量為3kg,方差為1,第二組平均質(zhì)量為6kg,方差為1,則全部產(chǎn)品的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=2,設(shè)Sn為數(shù)列{an}的前n項和,對于任意的n>1,n∈N,Sn+1+Sn-1=2(Sn+1)都成立,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=log2x,則f(410)=
 

查看答案和解析>>

同步練習(xí)冊答案