【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最小值和最大值;
(2)當(dāng)時,討論函數(shù)的單調(diào)性.
【答案】(1)最小值,最大值;
(2)當(dāng)時,單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;
當(dāng)時,單調(diào)增區(qū)間為;
當(dāng)時,單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.
【解析】
(1)由得到的解析式,利用和得到的單調(diào)區(qū)間,從而得到的最值;
(2)先求出,然后分,,進(jìn)行討論,通過判斷的正負(fù),從而得到的單調(diào)性.
(1)時,,
,
令,解得:,
令,解得:,
在遞減,在遞增,
的最小值是,
而,
因為
故在的最大值是;
(2)時,,
∴①當(dāng)時,
若,,為增函數(shù),
,,為減函數(shù),
,,為增函數(shù),
②當(dāng)時,,,為增函數(shù),
③當(dāng)時,,,為增函數(shù),
,,為減函數(shù),
,,為增函數(shù).
綜上所述,
當(dāng)時,單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;
當(dāng)時,單調(diào)增區(qū)間為;
當(dāng)時,單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.命題p:,則¬p:x∈R,x2+x+1<0
B.在△ABC中,“A<B”是“sinA<sinB”的既不充分也不必要條件
C.若命題p∧q為假命題,則p,q都是假命題
D.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“x≠1,則x2﹣3x+2≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則函數(shù)在上的所有零點之和為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意的x1<0,x2<0且x1≠x2,恒有
.
其中正確命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程,并求時直線的普通方程;
(2)直線和曲線交于兩點,點的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時,f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個零點,則實數(shù)a的取值范圍是( )
A.(e,+∞)B.(0,)
C.(1,)D.(-∞,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別是橢圓的左、右焦點,已知橢圓的長軸為是橢圓上一動點,的最大值為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,為橢圓上一點,為坐標(biāo)原點,且滿足,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中是自然對數(shù)的底數(shù).
(1)若,,證明;
(2)是否存在實數(shù),使得函數(shù)在區(qū)間上有兩個零點?若存在,求出的取值范圍:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,EFAB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點,求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com