分析 求出函數(shù)f(x+1)的解析式,利用函數(shù)是偶函數(shù)求出a,b的方程,通過方程f(x)=x有且只有一個實數(shù)根,求出a,b的方程,即可得到函數(shù)的解析式.
解答 解:二次函數(shù)f(x)=ax2+bx,
f(x+1)=ax2+2ax+bx+b+1,為偶函數(shù),可得2a+b=0.
方程f(x)=x有且只有一個實數(shù)根.
即ax2+bx=x有且只有一個實數(shù)根,可得b=1,
則a=$-\frac{1}{2}$.
二次函數(shù)f(x)=-$\frac{1}{2}$x2+x.
點評 本題考查二次函數(shù)的解析式的求法,二次函數(shù)的簡單性質(zhì)的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{π}{6}$,$\frac{5π}{6}$] | B. | [2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z) | ||
C. | (2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$)(k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{5π}{6}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{9}{2}$ | C. | 5 | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)g(x)在區(qū)間$[{0,\frac{π}{2}}]$上單調(diào)遞增 | B. | 函數(shù)f(x)與g(x)的最小正周期均為π | ||
C. | 函數(shù)g(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最大值為$\frac{{\sqrt{3}}}{2}$ | D. | 函數(shù)g(x)的對稱中心為$({\frac{Kπ}{2}+\frac{π}{6},0})$(K∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com