分析 (1)根據(jù)函數(shù)的奇偶性求出f(x)的解析式即可;(2)根據(jù)函數(shù)單調(diào)性的定義證明即可;(3)問題轉(zhuǎn)化為m=4x+1-2x在(0,1]上有解,令2x=t,t∈(1,2],從而求出m的范圍即可.
解答 解:(1)設(shè)x∈[-1,0),則-x∈(0,1],
f(-x)=2−x4−x+1=2x1+4x,
∵f(x)是奇函數(shù),
∴f(-x)=-f(x),
∴f(x)=-2x1+4x,
∴f(x)={2x1+4x,x∈(0,1]0,x=0−2x1+4x,x∈[−1,0);
(2)設(shè)-1<x1-x2<0,
∴f(x1)-f(x2)=-2x11+4x1+2x21+4x2=(2x1−2x2)(2x1+x2−1)(1+4x1)(1+4x2),
∵x1<x2,∴2x1-2x2<0,-2<x1+x2<0,
∴2x1+x2-1<0,
∴f(x1)-f(x2)>0,
∴f(x)在[-1,0)遞減;
(3)方程2xf(x)-2x-m=0有解,
即m=4x+1-2x在(0,1]上有解,
令2x=t,t∈(1,2],
t2-t+1∈(1,3],
∴m∈(1,3].
點(diǎn)評 本題考查了函數(shù)的奇偶性、單調(diào)性的證明以及轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1) | B. | (32,94) | C. | (23,49) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<a<4 | B. | 1<a≤2 | C. | 0<a<1 | D. | 2<a<4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若數(shù)列{an}是公差為1的等差數(shù)列,則數(shù)列{an+3} 是公差為4的等差數(shù)列 | |
B. | 數(shù)列6,4,2,0 是公差為2的等差數(shù)列 | |
C. | 若數(shù)列{an}等差,Sn是其前n項(xiàng)和,則數(shù)列{Snn}也等差 | |
D. | 4與6的等差中項(xiàng)是±5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com