【題目】如圖是我國2012年至2018年生活垃圾無害化處理量(單位:億噸)的折線圖.注:年份代碼1~7分別對應(yīng)年份2012~2018.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預測2020年我國生活垃圾無害化處理量.

參考數(shù)據(jù):,,,.

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計公式分別為.

【答案】(1)見解析;(2) ;1.82億噸.

【解析】

1)先由題中數(shù)據(jù),以及公式,即可直接計算出相關(guān)系數(shù),進而可得出結(jié)論;

(2)先由題意得到,根據(jù),求出,即可得回歸方程,進而可求出預測值.

(1)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得

,

.

因為的相關(guān)系數(shù)近似為0.99,說明的線性相關(guān)程度相當大,從而可以用線性回歸模型擬合的關(guān)系.

(2)由及(1)得.

.

所以關(guān)于的回歸方程為.

將2020年對應(yīng)的代入回歸方程得.

所以預測2020年我國生活垃圾無害化處理量約為1.82億噸.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),在矩形中,已知分別為的中點,對角線交于點,沿把矩形折起,使兩個半平面所成二面角為60°,如圖(2.

1)求證:;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)設(shè),討論的單調(diào)性;

(Ⅱ)若對任意恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的分類垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

廚余垃圾

可回收物

其他垃圾

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(1)試估計廚余垃圾投放正確的概率P;

(2)試估計生活垃圾投放錯誤的概率;

(3)假設(shè)廚余垃圾在廚余垃圾箱,可回收物箱,其他垃圾箱的投放量分別為a、bc,其中a>0,abc=600. 當數(shù)據(jù)ab、c的方差s2最大時,寫出a、b、c的值(結(jié)論不要求證明),并求出此時s2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點At,1)為函數(shù)yax2+bx+4a,b為常數(shù),且a≠0)與yx圖象的交點.

1)求t;

2)若函數(shù)yax2+bx+4的圖象與x軸只有一個交點,求ab;

3)若1≤a≤2,設(shè)當x≤2時,函數(shù)yax2+bx+4的最大值為m,最小值為n,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.

(I)求圓的直角坐標方程;

(II)若是直線與圓面的公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)若函數(shù)f(x)ax2bx3ab是偶函數(shù),定義域為[a12a],則a________,b________;

2)已知函數(shù)f(x)ax22x是奇函數(shù),則實數(shù)a________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個體經(jīng)營者把開始六個月試銷A、B兩種商品的逐月投資與所獲純利潤列成下表:

投資A商品金額(萬元)

1

2

3

4

5

6

獲純利潤(萬元)

0.65

1.39

1.85

2

1.84

1.40

投資B商品金額(萬元)

1

2

3

4

5

6

獲純利潤(萬元)

0.25

0.49

0.76

1

1.26

1.51

該經(jīng)營者準備下月投入12萬元經(jīng)營這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算請你幫助制定一下資金投入方案,使得該經(jīng)營者能獲得最大利潤,并按你的方案求出該經(jīng)營者下月可獲得的最大利潤(結(jié)果保留兩個有效數(shù)字)

查看答案和解析>>

同步練習冊答案