【題目】在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.

【答案】(1)見解析;(2)6.

【解析】試題分析: (1)利用進行代換,即可得出直線的直角坐標方程,利用消去參數(shù)可得曲線的普通方程;(2) 在直線上,根據(jù)對稱性,的最小值與的最小值相等,求出點P到圓心的距離減去半徑即可.

試題解析:

(1)∵,∴,

,∴直線的直角坐標方程為;

,∴曲線的普通方程為.

(2) ∵點在直線上,根據(jù)對稱性,的最小值與的最小值相等,

曲線是以為圓心,半徑的圓.

的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與過原點的直線恰有四個交點,設(shè)四個交點中橫坐標最大值為,則( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線與雙曲線交于A,B兩點,且點A的橫坐標為4.

(1)求的值及B點坐標;

(2)結(jié)合圖形,直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時間近似滿足一次函數(shù)關(guān)系;②用開水將熱飲沖泡后在室溫下放置,溫度與時間近似滿足函數(shù)的關(guān)系式為 為常數(shù)), 通常這種熱飲在40時,口感最佳,某天室溫為時,沖泡熱飲的部分數(shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時飲用,最少需要的時間為

A. 35 B. 30

C. 25 D. 20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式,對滿足的一切實數(shù)都成立,則實數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

在直角坐標系xOy中,曲線的參數(shù)方程為為參數(shù)),M上的動點,P點滿足,點P的軌跡為曲線

I)求的方程;

II)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸的直線與橢圓相交于兩點.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為提高服務(wù)質(zhì)量,隨機調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務(wù)給出滿意或不滿意的評價,得到下面列聯(lián)表:

滿意

不滿意

男顧客

40

10

女顧客

30

20

1)分別估計男、女顧客對該商場服務(wù)滿意的概率;

2)能否有95%的把握認為男、女顧客對該商場服務(wù)的評價有差異?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

同步練習冊答案