若四點(diǎn)A(5,0),B(-1,0),C(a,2),D(3,-2)共圓,則正實(shí)數(shù)a=( 。
A、2B、3C、4D、5
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:計(jì)算題,直線與圓
分析:利用待定系數(shù)法確定圓的方程,再代入點(diǎn)C,即可求出正實(shí)數(shù)a.
解答: 解:設(shè)圓的方程為x2+y2+Dx+Ey+F=0,
代入A,B,D,可得
25+5D+F=0
1-D+F=0
9+4+3D-2E+F=0
,
∴D=-4,E=-2,F(xiàn)=-5,
∴圓的方程為x2+y2-4x-2y-5=0,
C(a,2)代入可得a2+22-4a-4-5=0,
∵a>0,∴a=5,
故選:D.
點(diǎn)評(píng):本題考查圓的方程,考查學(xué)生的計(jì)算能力,確定圓的方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的敘述錯(cuò)誤的是( 。
A、對(duì)于命題P:?x∈R,x2+x+1<0,則¬P為:?x∈R,x2+x+1≥0
B、若“p且q”為假命題,則p,q均為假命題
C、“x>2”是“x2-3x+2>0”的充分不必要條件
D、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從裝有3個(gè)白球,4個(gè)紅球的箱子中,隨機(jī)取出了3個(gè)球,恰好是2個(gè)白球的概率是( 。
A、
4
35
B、
6
35
C、
12
35
D、
36
343

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的方程為x2+y2-2x-2y-2=0,直線l的方程為(m+1)x-my-1=0,圓C被直線l截得的弦長等于( 。
A、4
B、2
2
C、2
D、與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,已知對(duì)任意n∈N*,a1+a2+…+an=3n-1,則a12+a22+…+an2=(  )
A、
9n-1
2
B、
9n+1
2
C、
9n-2
2
D、
9n+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log(x-1)(3-x)的定義域是( 。
A、(1,2)∪(3,4)
B、[1,2]∪[3,4]
C、(1,2)∪(2,3)
D、[1,2]∪[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=O,△PAC是邊長為2的等邊三角形,PB=PD=
6
,AP=4AF.
(1)求證:平面PAC⊥平面ABCD;
(2)如果在線段PB上有一點(diǎn)M,且BM=
1
3
BP,求二面角M-DF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}的前n項(xiàng)和為Sn,Sn=
1
2
n(n+1)b1,b7=21,數(shù)列{an}滿足a1b1+a2b2+…+anbn=n(n+1)(2n+1).
(1)求an
(2)Tn=a1-a2+a3-a4+…+(-1)n+1•an,求Tn;
(3)求證:
1
a12
+
1
a22
+…+
1
an2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BC⊥平面PBD;
(Ⅱ)若點(diǎn)E在線段PC上,且PC=3PE,求三棱錐P-BDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案