【題目】設(shè)奇函數(shù)在上是單調(diào)減函數(shù),且,若函數(shù)對所有的都成立,則的取值范圍是_____________.
【答案】t≥1或t≤0
【解析】
根據(jù)題意,由函數(shù)的奇偶性與單調(diào)性分析可得在區(qū)間[﹣1,1]上,f(x)max=f(-1),據(jù)此若f(x)≤t2﹣t+1對所有的x∈[﹣1,1]都成立,必有1≤t2﹣t+1恒成立,即t2﹣t≥0恒成立,解t2﹣t≥0即可得答案.
根據(jù)題意,函數(shù)f(x)在[﹣1,1]上是減函數(shù),則在區(qū)間[﹣1,1]上,f(x)max=f(-1),
又由f(x)為奇函數(shù),則f(-1)=﹣f(1)=1,
若f(x)≤t2﹣t+1對所有的x∈[﹣1,1]都成立,
必有1≤t2﹣t+1恒成立,即t2﹣t≥0恒成立,
解可得:t≥1或t≤0,
則t的取值范圍為:t≥1或t≤0,
故答案為:t≥1或t≤0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司決定對旗下的某商品進(jìn)行一次評估,該商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住2022年冬奧會契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和銷售策略改革,并提高定價到元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量至少達(dá)到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,過左焦點且斜率為的直線交橢圓于兩點,線段的中點為,直線:交橢圓于兩點.
(1)求橢圓的方程;
(2)求證:點在直線上;
(3)是否存在實數(shù),使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足, .
(1)求的通項公式;
(2)各項均為正數(shù)的等比數(shù)列中, , ,求的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在(0,+)上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018廣東深圳市高三第一次調(diào)研考試】已知函數(shù).
(I)討論函數(shù)的單調(diào)性;
(II)當(dāng)時,關(guān)于的不等式在上恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com