【題目】如圖1,在中,分別是邊上的中點,將沿折起到的位置,使如圖2

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ)

【解析】

(Ⅰ)由已知可得,,可證平面,進而有平面,即可證明結(jié)論;

(Ⅱ)由(Ⅰ)得平面平面,在正中過,垂足為,則有平面,以為坐標(biāo)原點建立空間直角坐標(biāo)系,確定坐標(biāo),求出平面法向量坐標(biāo),按照空間向量線面角公式,即可求解.

(Ⅰ)在圖1中,分別為邊中點,

所以,又因為所以

在圖2,,

平面,又因為,所以平面

又因為平面,所以平面平面

(Ⅱ)由(Ⅰ)知平面,平面

所以平面平面,又因為平面平面

在正中過,垂足為,則中點,

平面,分別以,梯形中位線,

所在直線為軸,軸,軸建立如圖坐標(biāo)系,

設(shè)平面的法向量為,

,

,則,

平面的一個法向量為

設(shè)直線與平面所成角為

所以直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,用種不同的顏色給圖中的個格子涂色,每個格子涂一種顏色,要求最多使用種顏色且相鄰的兩個格子顏色不同,則不同的涂色方法共有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時間的關(guān)系如下表所示:

土地使用面積(單位:畝)

管理時間(單位:月)

并調(diào)查了某村名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:

愿意參與管理

不愿意參與管理

男性村民

女性村民

求出相關(guān)系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關(guān)?

若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考公式:,參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“日行一萬步,健康你一生”的養(yǎng)生觀念已經(jīng)深入人心,由于研究需要,某學(xué)生收集了“微信運動”中100名成員一天的行走步數(shù),對這100個數(shù)據(jù)按組距為2500進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計表:

步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為

組別

步數(shù)分組

頻數(shù)

10

20

10

已知達到“日行一萬步,健康你一生”標(biāo)準(zhǔn)的頻率為.

(1)求,的值;

(2)以頻率估計概率,從該“微信運動”中任意抽取3名成員,記其中達到“日行一萬步,健康你一生”標(biāo)準(zhǔn)的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是的導(dǎo)函數(shù)的圖象,對于下列四個判斷,其中正確的判斷是( .

A.上是增函數(shù);

B.當(dāng)時,取得極小值;

C.上是增函數(shù)、在上是減函數(shù);

D.當(dāng)時,取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MBx軸交于點C,直線MAy軸交于點D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水果經(jīng)銷商為了對一批剛上市水果進行合理定價,將該水果按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(元/公斤)

16

17

18

19

20

日銷售量(公斤)

168

146

120

90

56

1)已知變量具有線性相關(guān)關(guān)系,求該水果日銷售量(公斤)關(guān)于試銷單價(元/公斤)的線性回歸方程,并據(jù)此分析銷售單價時,日銷售量的變化情況;

2)若該水果進價為每公斤元,預(yù)計在今后的銷售中,日銷售量和售價仍然服從(1)中的線性相關(guān)關(guān)系,該水果經(jīng)銷商如果想獲得最大的日銷售利潤,此水果的售價應(yīng)定為多少元?

(參考數(shù)據(jù)及公式:,,,線性回歸方程,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(-1,0),設(shè)不垂直于x軸的直線l與拋物線y2=2x交于不同的兩點AB,若x軸是∠APB的角平分線,則直線l一定過點

A. ,0) B. (1,0) C. (2,0) D. (-2,0)

查看答案和解析>>

同步練習(xí)冊答案