4.已知集合A={3,a2},B={2,1-a,b},且A∩B={1},則A∪B=(  )
A.{0,1,3}B.{1,2,3}C.{1,2,4}D.{0,1,2,3}

分析 由A與B交集的元素為1,得到1屬于A且屬于B,得到a2=1,求出a的值,進而求出b的值,確定出A與B,找出既屬于A又屬于B的元素,即可確定出兩集合的并集.

解答 解:∵A={3,a2},集合B={2,1-a,b},且A∩B={1},
∴a2=1,解得:a=1或a=-1,
當a=1時,1-a=1-1=0,此時b=1,
當a=-1時,1-a=1-(-1)=2,不合題意,舍去;
∴A={3,1},集合B={0,1,2},
則A∪B={0,1,2,3}.
故選D

點評 此題考查了交、并集及其運算,是一道基本題型,熟練掌握交、并集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.復數(shù)z滿足z(2-i)=2+i(i為虛數(shù)單位),則$\overline z$在復平面內(nèi)對應的點所在象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知正方體ABCD-A1B1C1D1的棱長為1,過正方體ABCD-A1B1C1D1的對角線BD1的截面面積為S,則S的取值范圍是[$\frac{\sqrt{6}}{2},\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.等比數(shù)列{an}的前n項和為Sn,若a2+S3=0,則公比q=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)的離心率為$\sqrt{3}$,虛軸端點與焦點的距離為$\sqrt{5}$.
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若tanα=3,則${cos^2}({α+\frac{π}{4}})-{cos^2}({α-\frac{π}{4}})$=( 。
A.$-\frac{3}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知直角△ABC中AB是斜邊,$\overrightarrow{CA}$=(3,-9),$\overrightarrow{CB}$=(-3,x),則x的值是( 。
A.27B.1C.9D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=4,則過B,E,F(xiàn)的平面截該正方體所得的截面周長為( 。
A.6$\sqrt{2}$+4$\sqrt{5}$B.6$\sqrt{2}$+2$\sqrt{5}$C.3$\sqrt{2}$+4$\sqrt{5}$D.3$\sqrt{2}$+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=x3-2x,則f(3)=( 。
A.1B.19C.21D.35

查看答案和解析>>

同步練習冊答案