【題目】數(shù)列的前項(xiàng)13,7,,)組成集合,從集合中任取)個(gè)數(shù),其所有可能的個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當(dāng)時(shí),,,;時(shí),,,.

1)當(dāng)時(shí),求,,的值;

2)證明:時(shí)集合時(shí)集合(為以示區(qū)別,用表示)有關(guān)系式);

3)試求(用表示).

【答案】(1),,,(2)見(jiàn)解析(3)

【解析】

1)當(dāng)時(shí),得出,根據(jù)定義得出、的值,可計(jì)算出的值;

2)當(dāng)時(shí),集合個(gè)元素,比時(shí)的集合多了一個(gè)元素;

,對(duì)應(yīng)的包含兩個(gè)部分:(i)若不含,則中的任何一項(xiàng)恰好為時(shí)集合的對(duì)應(yīng)的中的一項(xiàng);(ii)若中含的任何一項(xiàng),除了,其余的個(gè)數(shù)均來(lái)自集合,這個(gè)數(shù)的乘積恰好為集合所對(duì)應(yīng)的中的一項(xiàng),即可證明;

3)由,,,猜想,下面利用數(shù)學(xué)歸納法進(jìn)行即可.

1)當(dāng)時(shí),,

,

2)證明:當(dāng)時(shí),集合個(gè)元素,比時(shí)的集合多了一個(gè)元素:.∴對(duì)應(yīng)的包含兩個(gè)部分:

中不含,則中的任何一項(xiàng)恰好為時(shí)集合的對(duì)應(yīng)的中的一項(xiàng).

中含的任何一項(xiàng),除了,其余的個(gè)數(shù)均來(lái)自集合,這個(gè)數(shù)的乘積恰好為集合所對(duì)應(yīng)的中的一項(xiàng).

∴有關(guān)系式

3)解:由,,,

猜想.下面證明:(i)易知時(shí)成立.

ii)假設(shè)時(shí),,

時(shí),

(其中,,2,…,k,為時(shí)可能的k個(gè)數(shù)的乘積的和為,

,即時(shí),也成立,

綜合(i)(ii)知對(duì),成立.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地的中小學(xué)辦學(xué)條件在政府的教育督導(dǎo)下,迅速得到改變.教育督導(dǎo)一年后.分別隨機(jī)抽查了初中(用表示)與小學(xué)(用表示)各10所學(xué)校.得到相關(guān)指標(biāo)的綜合評(píng)價(jià)得分(百分制)的莖葉圖如圖所示.則從莖葉圖可得出正確的信息為( )(80分及以上為優(yōu)秀). ①初中得分與小學(xué)得分的優(yōu)秀率相同;②初中得分與小學(xué)得分的中位數(shù)相同③初中得分的方差比小學(xué)得分的方差大④初中得分與小學(xué)得分的平均分相同.

A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬(wàn)公里,其中高鐵營(yíng)業(yè)里程2.9萬(wàn)公里,超過(guò)世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬(wàn)公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著

B.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)

C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上

D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面四邊形中,,現(xiàn)將沿四邊形的對(duì)角線折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn),如圖2,這時(shí)平面平面.

(1)求直線與平面所成角的正切值;

(2)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個(gè)月時(shí)污染度為,整治后前四個(gè)月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開(kāi)始上升,現(xiàn)用下列三個(gè)函數(shù)模擬從整治后第一個(gè)月開(kāi)始工廠的污染模式:,,,其中表示月數(shù),、、分別表示污染度.

1)問(wèn)選用哪個(gè)函數(shù)模擬比較合理,并說(shuō)明理由;

2)若以比較合理的模擬函數(shù)預(yù)測(cè),整治后有多少個(gè)月的污染度不超過(guò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,底面為等邊三角形,分別是的中點(diǎn).

1)證明:平面平面;

2)如何在上找一點(diǎn),使平面并說(shuō)明理由;

3)若,對(duì)于(2)中的點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線x軸,y軸上的截距分別為,證明:為定值;

(3)若是橢圓上不同兩點(diǎn),軸,圓E過(guò),且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問(wèn):橢圓是否存在過(guò)焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了應(yīng)對(duì)金融危機(jī),決定適當(dāng)進(jìn)行裁員,已知這家公司現(xiàn)有職工人(,且10的整數(shù)倍),每人每年可創(chuàng)利100千元,據(jù)測(cè)算,在經(jīng)營(yíng)條件不變的前的提下,若裁員人數(shù)不超過(guò)現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利1千元(即若裁員人,留崗員工可多創(chuàng)利潤(rùn)千元);若裁員人數(shù)超過(guò)現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利2千元(即若裁員人,留崗員工可多創(chuàng)利潤(rùn)千元),為保證公司的正常運(yùn)轉(zhuǎn),留崗的員工數(shù)不得少于現(xiàn)有員工人數(shù)的50%,為了保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費(fèi).

1)設(shè)公司裁員人數(shù)為,寫(xiě)出公司獲得的經(jīng)濟(jì)效益(千元)關(guān)于的函數(shù)(經(jīng)濟(jì)效益=在職人員創(chuàng)利總額被裁員工生活費(fèi));

2)為了獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,為兩非零有理數(shù)列(即對(duì)任意的均為有理數(shù)),為一無(wú)理數(shù)列(即對(duì)任意的為無(wú)理數(shù)).

1)已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式.

2)若為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為

3)已知,,對(duì)任意的恒成立,試計(jì)算

查看答案和解析>>

同步練習(xí)冊(cè)答案