如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M 為右準線上一點(異于右準線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.
(1) 求橢圓C的標準方程;
(2) 設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
如圖,橢圓C0:=1(a>b>0,a、b為常數(shù)),動圓C1:x2+y2=t,b<t1<a.點A1、A2分別為C0的左、右頂點,C1與C0相交于A、B、C、D四點.
(1) 求直線AA1與直線A2B交點M的軌跡方程;
(2) 設(shè)動圓C2:x2+y2=t與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t+t為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點,A、B分別是此橢圓的右頂點和上頂點,P是橢圓上一點,O是坐標原點,OP∥AB,PF1⊥x軸,F(xiàn)1A=+,則此橢圓的方程是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0)的離心率為,且過點A(0,1).
(1) 求橢圓的方程;
(2) 過點A作兩條互相垂直的直線分別交橢圓于點M、N,求證:直線MN恒過定點P.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當取最小值時,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,ABCD為直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點,且PB⊥BD.
(1) 求證:PA⊥BD;
(2) 若PC與CD不垂直,求證:PA≠PD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com