【題目】已知函數(shù),其中.
(Ⅰ)當時,判斷函數(shù)的零點個數(shù);
(Ⅱ)若對任意,恒成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)函數(shù)的零點個數(shù)為1;(Ⅱ)
【解析】
(Ⅰ)根據(jù)題意,代入,對函數(shù)求導,判斷函數(shù)單調(diào)性,根據(jù)特殊值,即可判斷零點個數(shù);
(Ⅱ)根據(jù)題意,解決函數(shù)恒成立問題,方法一:轉(zhuǎn)化對任意恒成立,則有對任意恒成立,構(gòu)造函數(shù),只需求,利用導數(shù)研究函數(shù)最值問題。方法二:對任意恒成立.構(gòu)造函數(shù),轉(zhuǎn)化成射線與函數(shù)的圖象相切時屬臨界狀態(tài),計算求解;方法三:含參的函數(shù)最小值探究,只需,即可求解參數(shù)取值范圍.
(Ⅰ)當時,,其定義域為,
求導得,
于是當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增,又,所以函數(shù)的零點個數(shù)為1;
(Ⅱ)法1:因?qū)θ我?/span>,恒成立,即對任意恒成立,于是對任意恒成立,
令,只需.
對函數(shù)求導,得,令,
則,所以函數(shù)在上單調(diào)遞增.
又,所以當時,,,函數(shù)單調(diào)遞減;當時,,,函數(shù)單調(diào)遞增,所以函數(shù),于是,即實數(shù)的取值范圍為.
法2:因?qū)θ我?/span>,恒成立,即對任意恒成立.構(gòu)造函數(shù),對其求導,得,
令,得(舍去),所以當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增.
函數(shù)的圖象是一條過原點的射線(不包括端點),旋轉(zhuǎn)射線(不含端點),發(fā)現(xiàn)與函數(shù)的圖象相切時屬臨界狀態(tài).
設切點為,則,整理得,
顯然在上是增函數(shù),又,所以,此時切線斜率為1,結(jié)合圖象,可知實數(shù)的取值范圍為.
法3:根據(jù)題意只需即可.
又,令,因2與異號,所以必有一正根,不妨設為,則,即,
當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增,所以,
又在上是減函數(shù),又,所以,
由得在上單調(diào)遞增,則實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實常數(shù)且).
(Ⅰ)當時;
①設,判斷函數(shù)的奇偶性,并說明理由;
②求證:函數(shù)在上是增函數(shù);
(Ⅱ)設集合,若,求的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD是矩形,平面平面ABCD,,E是SB的中點,M是CD上任意一點.
(1)求證:;
(2)若,,平面SAD,求直線BM與平面SAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列、中,,,且,,設數(shù)列、的前項和分別為和.
(1)若數(shù)列是等差數(shù)列,求和;
(2)若數(shù)列是公比為2的等比數(shù)列.
①求;
②是否存在實數(shù),使對任意自然數(shù)都成立?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)響應“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足如下關(guān)系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費)元.已知這種水果的市場售價大約為15元/千克,且銷路暢通供不應求.記該水果樹的單株利潤為(單位:元).
(Ⅰ)求的函數(shù)關(guān)系式;
(Ⅱ)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別是,,點是橢圓上除長軸端點外的任一點,連接,,設的內(nèi)角平分線交的長軸于點.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機附贈玩具,,中的一個,每袋零食乙從玩具,中隨機附贈一個.記事件:一次性購買袋零食甲后集齊玩具,,;事件:一次性購買袋零食乙后集齊玩具,.
(1)求概率,及;
(2)已知,其中,為常數(shù),求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為正項數(shù)列的前項和,滿足.
(1)求的通項公式;
(2)若不等式對任意正整數(shù)都成立,求實數(shù)的取值范圍;
(3)設(其中是自然對數(shù)的底數(shù)),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com