【題目】(2017全國Ⅱ,文19)海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
舊養(yǎng)殖法
新養(yǎng)殖法
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:,
【答案】(1)0.62(2)有(3)新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
【解析】試題分析: (1)根據(jù)頻率分布直方圖中小長方形面積等于對應(yīng)概率,計(jì)算出事件A的概率;(2)將數(shù)據(jù)填入表格,代入卡方公式,計(jì)算出的數(shù)值與表哥中參考數(shù)據(jù)對照可做出判斷;(3)先從均值比較大小,再從數(shù)據(jù)分布情況看穩(wěn)定性,綜上可得結(jié)論.
試題解析:
(1)舊養(yǎng)殖法的箱產(chǎn)量低于50 kg的頻率為(0.012+0.014+0.024+0.034+0.040)×5=0.62.
因此,事件A的概率估計(jì)值為0.62.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | 62 | 38 |
新養(yǎng)殖法 | 34 | 66 |
K2=≈15.705.
由于15.705>6.635,故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55 kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45 kg到50 kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
點(diǎn)睛:(1)頻率分布直方圖中小長方形的面積等于對應(yīng)的概率,所以小長方形的面積之和為1;(2)頻率分布直方圖中均值等于組中值域?qū)?yīng)概率乘積之和;(3)均值大小代表水平高低,均值越大水平越高,方差大小代表穩(wěn)定性,方差或標(biāo)準(zhǔn)差的值越小,代表越穩(wěn)定,且集中程度高.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值0,最小值,
(1)求實(shí)數(shù)的值;
(2)若關(guān)于x的方程在上有解,求實(shí)數(shù)k的取值范圍;
(3)若,如果對任意都有,試求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,直線與x,y軸分別交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),且△OAB 的面積的最小值為
(1)求橢圓的離心率;
(2) 設(shè)點(diǎn)C、D、F2分別為橢圓的上、下頂點(diǎn)以及右焦點(diǎn),E 為線段OD 的中點(diǎn),直線F2E 與橢圓 相交于M、N 兩點(diǎn),若,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù), 為常數(shù).
(1)確定的值;
(2)求證: 是上的增函數(shù);
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a,其中b=-20,a=-b
(2)預(yù)計(jì)在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入—成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把單位正方體的六個面分別染上6種顏色,并畫上個數(shù)不同的金雞,各面的顏色與雞的個數(shù)對應(yīng)如表:
面上所染顏色 | 紅 | 黃 | 藍(lán) | 青 | 紫 | 綠 |
該面上的金雞個數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
取同樣的4個上述的單位正方體拼成一個如圖所示的水平放置的長方體.則這個長方體的下底面總計(jì)畫有______個金雞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)市場調(diào)查,某型號的空氣凈化器有如下的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(Ⅰ)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(Ⅱ)假定你是工廠老板,你該如何決定該產(chǎn)品生產(chǎn)的數(shù)量?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在使得成立。
(1)函數(shù)是否屬于集合M?請說明理由;
(2)函數(shù)M,求a的取值范圍;
(3)設(shè)函數(shù),證明:函數(shù)M。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com