【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)l過(guò)點(diǎn)P(-3,2),傾斜角為,且.曲線(xiàn)C的參數(shù)方程為(為參數(shù)).直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為M.
(Ⅰ)求直線(xiàn)l的參數(shù)方程和曲線(xiàn)C的普通方程;
(Ⅱ)求線(xiàn)段PM的長(zhǎng).
【答案】(Ⅰ)l的參數(shù)方程為(t為參數(shù)).C的普通方程為(Ⅱ)
【解析】試題分析:(Ⅰ)由條件,有, ,所以,又直線(xiàn)l過(guò)點(diǎn)P(-3,2),即可得直線(xiàn)l的參數(shù)方程 ,曲線(xiàn)C的參數(shù)方程為(為參數(shù))可得曲線(xiàn)C的普通方程(Ⅱ)直線(xiàn)l的參數(shù)方程與曲線(xiàn)C的普通方程聯(lián)立,根據(jù)韋達(dá)定理得出AB的中點(diǎn)M對(duì)應(yīng)的參數(shù)為即可得PM的長(zhǎng).
試題解析:
(Ⅰ)由條件,有, ,所以,
又直線(xiàn)l過(guò)點(diǎn)P(-3,2),所以直線(xiàn)l的參數(shù)方程為(t為參數(shù)). ①
曲線(xiàn)C的參數(shù)方程為(為參數(shù)),曲線(xiàn)C的普通方程為. ②
(Ⅱ)①代入②,得,
設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1,t2,則,
所以AB的中點(diǎn)M對(duì)應(yīng)的參數(shù)為,
所以線(xiàn)段PM的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是的菱形,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直, 為的中點(diǎn).
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在曲線(xiàn)上,⊙過(guò)原點(diǎn),且與軸的另一個(gè)交點(diǎn)為,若線(xiàn)段,⊙和曲線(xiàn)上分別存在點(diǎn)、點(diǎn)和點(diǎn),使得四邊形(點(diǎn), , , 順時(shí)針排列)是正方形,則稱(chēng)點(diǎn)為曲線(xiàn)的“完美點(diǎn)”.那么下列結(jié)論中正確的是( ).
A. 曲線(xiàn)上不存在”完美點(diǎn)”
B. 曲線(xiàn)上只存在一個(gè)“完美點(diǎn)”,其橫坐標(biāo)大于
C. 曲線(xiàn)上只存在一個(gè)“完美點(diǎn)”,其橫坐標(biāo)大于且小于
D. 曲線(xiàn)上存在兩個(gè)“完美點(diǎn)”,其橫坐標(biāo)均大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,曲線(xiàn)C1的參數(shù)方程為(a為參數(shù)),以原點(diǎn)O為極點(diǎn),
以x軸正半軸為極軸,建立極坐標(biāo)系,曲 線(xiàn)C2的極坐標(biāo)方程為
(1)求曲線(xiàn)C1的普通方程與曲線(xiàn)C2的直角坐標(biāo)方程.
(2)設(shè)P為曲線(xiàn)C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)= , .
(1)若函數(shù)在處取得極值,求的值,并判斷在處取得極大值還是極小值.
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形中, , 于點(diǎn), ,且.沿把折起到的位置(如圖),使.
(I)求證: 平面.
(II)求三棱錐的體積.
(III)線(xiàn)段上是否存在點(diǎn),使得平面,若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求的取值范圍;
(2)記兩個(gè)極值點(diǎn)為,且,已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒(méi)有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分)已知?jiǎng)訄A過(guò)定點(diǎn)且與軸截得的弦的長(zhǎng)為.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)已知點(diǎn),動(dòng)直線(xiàn)和坐標(biāo)軸不垂直,且與軌跡相交于兩點(diǎn),試問(wèn):在軸上是否存在一定點(diǎn),使直線(xiàn)過(guò)點(diǎn),且使得直線(xiàn),,的斜率依次成等差數(shù)列?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com